七年级数学下册教案

时间:2024-08-20 15:27:53 教案 我要投稿
立即下载

七年级数学下册教案

  • 相关推荐

  作为一名优秀的教育工作者,很有必要精心设计一份教案,借助教案可以提高教学质量,收到预期的教学效果。那要怎么写好教案呢?下面是小编收集整理的七年级数学下册教案,仅供参考,欢迎大家阅读。

七年级数学下册教案

七年级数学下册教案1

  知识与技能:

  1、了解一元一次不等式组的概念、

  2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、

  3、会解一元一次不等式组、

  过程与方法:

  通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则、

  情感态度:

  运用数轴确定不等式组的解集是行之有效的方法、这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣、

  教学重点:

  一元一次不等式组的解法、

  教学难点:

  确定一元一次不等式组的解集、

  一、情境导入,初步认识

  问题1:

  现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

  解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①

  x>____,②

  合起来,组成一个__________

  由①解得_____________

  由②解得_____________

  在数轴上表示就是________________

  容易看出:x的取值范围是____________________

  这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框、

  问题2:

  由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法

  教学说明:全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论

  二、思考探究,获取新知

  思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

  归纳结论

  1、定义:

  (1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组、(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集、(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组、

  2、一元一次不等式组的解法:

  (1)求出每个一元一次不等式的解集、

  (2)求出这些解集的公共部分,便得到一元一次不等式组的解集

七年级数学下册教案2

  教学目标:

  知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

  能力目标:培养学生快速运算的能力.

  情感目标:培养学生耐心细致的学习习惯.

  教学重点与难点:多项式除以单项式的法则是本节的重难点.

  教学过程:

  一、复习提问

  1.计算并回答问题:

  (1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

  (3)以上的计算是什么运算?能否叙述这种运算法则?

  2.计算并回答问题:

  (1)3x(x2x+1);(2)4a(a2a+2)

  3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

  说明:希望学生能写出

  2×3=6,(2的3倍是6)

  3×2=6,(3的`2倍是6)

  6÷2=3,(6是2的3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

  二、新课引入

  对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

  1.法则的推导.

  引例:(8x312x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

  然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

  解:(8x312x2+4x)÷4x

  =8x3÷4x12x2÷4x+4x÷4x

  =2x23x+4x.

  思考题:(8x312x2+4x)÷(4x)=?

七年级数学下册教案3

  教学目标

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  对话探索设计

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的.数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

七年级数学下册教案4

  教学目标:

  1.掌握数轴三要素,能正确画出数轴.

  2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

  教学重点:

  数轴的概念.

  教学难点:

  从直观认识到理性认识,从而建立数轴概念.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示课本P7的“问题”(学生画图)

  (二)合作交流,解读探究

  师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

  【点拨】(1)引导学生学会画数轴.

  第一步:画直线,定原点.

  第二步:规定从原点向右的方向为正(左边为负方向).

  第三步:选择适当的长度为单位长度(据情况而定).

  第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

  对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?

  (2)有了以上基础,我们可以来试着定义数轴:

  规定了原点、正方向和单位长度的直线叫数轴.

  做一做学生自己练习画出数轴.

  试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

  讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

  小结整数在数轴上都能找到点表示吗?分数呢?

  可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.

  (三)应用迁移,巩固提高

  【例1】下列所画数轴对不对?如果不对,指出错在哪里?

  【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

  【例3】下列语句:

  ①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的`点;⑤数轴上的点所表示的数都是有理数.正确的说法有(  )

  A.1个B.2个C.3个D.4个

  【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.

  【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有(  )

  A.1998个或1999个B.1999个或20xx个

  C.20xx个或20xx个D.20xx个或20xx个

  (四)总结反思,拓展升华

  数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

  (五)课堂跟踪反馈

  夯实基础

  1.规定了、     、的直线叫做数轴,所有的有理数都可从用上的点来表示.

  2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.

  3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

  A.7 B.-3

  C.7或-3 D.不能确定

  4.在数轴上,原点及原点左边的点所表示的数是(  )

  A.正数B.负数

  C.不是负数D.不是正数

  5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.

  提升能力

  6.与原点距离为3.5个单位长度的点有2个,它们分别是和.

  7.画出一条数轴,并把下列数表示在数轴上:

  +2,-3,0.5,0,-4.5,4,3.

  开放探究

  8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.

  9.下列四个数中,在-2到0之间的数是(  )

  A.-1 B.1 C.-3 D.3

七年级数学下册教案5

  恰当的信息技术与初中数学教学深度融合,课堂本着以学生为主体,教师为导体的原则,精心设计情境教学活动,为学生营造自主学习和探索交流的学习环境,活跃学生思维,激发学习兴趣.为提高教学质量,利用现代教育技术手段,采用启发式、讨论式、研究式的教学方法,让学生在自主探究、合作交流中提高学习积极性,培养学生分析问题、解决问题的能力。我以北师大版数学七年级下册《两条直线的位置关系》一课为例,谈谈如何应用101教育PPT引导学生由动手操作到理性思考,由自主探索到合作交流,由生活实际到建立模型解决问题,让学生积累数学活动经验,完成对本节知识的探索与交流。

  一、教材分析:

  本节是七下第二章相交线、平行线中的第一节,本节主要是了解平面内两条直线的位置关系,由学生动手画出相交线图形,观察图形产生具有特殊位置关系的对顶角的概念和对顶角相等的性质,由此图产生具有特殊数量关系的余角、补角的概念,由生活实例(打台球)引出并推导余角补角性质采用类比的方法,培养学生观察、推理、归纳等能力。

  二、学情分析:

  学生在小学已经认识了平行线、相交线、角,在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。在前面知识的学习过程中,学生已具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

  基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

  三、教法与学法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,,故选用探究式教学主动学习的教学策略以及动手实践,自主探索,合作交流的重要学习方式.引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识。

  2.借用多媒体课件辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生对几何学习方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

  四、教学目标:

  1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

  2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

  3.情感与态度:激发学生学习数学的兴趣,认识现实生活中蕴含着大量的与数学有关问题,培养学生用数学方法解决问题的能力。

  教学重点:对顶角、余角、补角的概念及性质。

  教学难点:余角、补角性质的应用。

  五、教具准备:

  多媒体课件、三角板

  六、教学过程设计

  新课标指出,数学教学过程是学生在教师指导下的数学学习活动,是师,是教师和学生互动的过程,是师生共同发展的过程。本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:创设情境、引入课题;第二环节:动手实践、探究新知;第三环节:合作交流,再探新知;第四环节: 联系生活,解决问题;第五环节:学有所思,归纳总结; 第六环节:布置作业,能力延伸。

  第一环节 创设情境 引入课题

  活动内容一:两条直线的位置关系

  教师展示一组生活图片,由学生观察图片,回答问题:

  (1)图片中两条直线有哪几种位置关系?

  引入课题:《两条直线的位置关系(1)》

  出示本节教学目标、重难点。

  (2)那么什么叫相交线和平行线呢?

  结论:1.一般地,在同一平面内,两条直线的位置关系有两种;相交和平行。

  2:定义:若两条直线只有一个公共点,我们称这两条直线为相交线。

  在同一平面内,不相交的两条直线叫做平行线。

  【设计意图】:利用生活图片引入课题,让学生体会数学与生活的联系,激发学生学习的兴趣,通过观察总结出同一平面内两条直线的位置关系,经历知识的形成过程中,激发学生学习积极性,从而提高学课堂效率,通过练习加深他们对概念的理解。

  赋能路径:学生对平行线、相交线概念的表述不清楚,对于同一平面的重要性理解不到位,应大胆让学生表述,培养学生的语言表达能力,利用101PPT展示空间中两条异面直线存在既不相交也不平行的位置关系,从而更深入地理解同一平面的意义。

  第二环节 动手实践 探究新知

  动手实践一:

  利用101中的几何画板让学生画出:两条直线AB和CD相交于点O。

  通过观察图形,小组合作交流,尝试用自己的语言描述对顶角的定义。

  赋能路径: 利用多媒体技术让直线CD绕着点O旋转,在旋转过程中发现具有这种位置关系的两角不会随着角度的变化而变化,在利用多媒体出示剪刀模型,随着剪刀的动画,让学生生动形象的理解对顶角相等这一性质,激发学习兴趣,从而突破本节教学重点。

  巩固练习:

  1、下列各图中,∠1和∠2是对顶角的是( )

  2、如图3所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?

  【设计意图】:通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。从而进一步培养学生抽象几何图形进行建模的能力。设计练习主要是检测学生对顶角的概念及其性质的应用的理解程度,体会数学与生活的联系,增加浓郁的学习氛围。

  课堂实施情况:利用几何画板建立数学模型,提高学生运用信息技术工具来学习数学的兴趣,增强逻辑推理能力教学目标的完成。学生对于对顶角概念的表述不到位,教师应鼓励学生用自己的语言表述,强调反向延长线,规范语言。讨论对顶角相等这一性质时,教师积极引导,让学生充分思考,再合作交流,最后归纳、总结,让学生经历知识的形成过程。

  第三环节 合作交流 、再探新知

  利用学生动手操作画出的图形,探究补角、余角定义

  补角定义:一般地,如果两个角的`和是180°,那么称这两个角互为补角。

  余角定义:如果两个角的和是90°,那么称这两个角互为余角。

  强调:互余或互补是指两个角,与角的的位置无关

  【设计意图】:在合作交流中,经历知识的形成过程,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。

  赋能路径:利用几何画板画出的相交线图形,学生通过观察具有补角、余角位置关系的两角给出补角,余角定义,利用多媒体动画展示补角、余角定义与角的位置无关,定义只和两角的和是否是180度或90度有关,让学生更深刻理解补角余角定义,突破本节教学重点。

  巩固练习:

  问题1:指出下列图中,哪两个角互为余角?哪两个角互为补角

  2、图中∠1、∠2、∠3互补吗?

  【设计意图】:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。

  第四环节 联系生活 解决问题

  动手实践二 :

  打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=90°,∠1=∠2

  小组合作交流,解决下列问题:在图2.1—8中

  问题1:哪些角互为补角?哪些角互为余角?

  问题2:∠3与∠4有什么关系?为什么?

  问题3:∠AOC与∠BOD有什么关系?为什么?

  归纳:同角或等角的补角相等。

  同角或等角的余角相等。

  巩固练习:

  如图所示, 因为∠1+∠3=180°,∠2+∠3=180°,所以∠1= ,理由是 ________________.

  【设计意图】:通过生动有趣的活动情景,培养学生观察、操作、推理、交流等活动能力,使学生在自主学习的过程中,经历知识形成过程,培养学生抽象几何图形进行建模的能力。通过巩固练习检测学生对余角、补角性质的应用情况。

  赋能路径:利用多媒体动画演示打台球进球路径,更生动形象,吸引学生注意力,激发探索知识的欲望,让学生体会数学源于生活并运用于生活,让学生经历怎么把实际问题转化成数学问题,培养建立数学模型的能力,突破难点。

  课堂实施效果:对于补角、余角的性质的推导是本节课的难点,教师应积极引导学生列出式子,让学生通过观察表达式得出补角的性质,再通过类比补角性质得出余角的性质。在巩固练习中,理由大部分填对顶角相等,对于补角性质的应用多加练习。

  课堂检测:本环节利用多媒体技术设计一个超链接,每组选一道题,根据选题派学生代表回答问题,根据情况得分。

  【设计意图】:本环节是本节课的一个亮点,以小组竞赛的形式完成课堂检测环节,既检测学生对本节重点知识掌握情况,活跃课堂气氛的同时,还培养学生拼搏进取的精神。

  赋能路径:教师提前把设计好的练习提前展示在多媒体上,待新课讲完后,以小组竞赛形式出示,学生有小组竞赛的精神,同学们回答问题积极,并且对于回答不具体的同学,同小组同学积极补充,活跃了课堂气氛,启到了很好的教学效果。

  第五环节 学有所思 归纳总结

  你学到了哪些知识点?

  你学到了哪些方法?

  你认为还有哪些问题?

  【设计意图】:本环节使学生把知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力,体会与同伴分享成果的快乐过程。

  课堂实施情况:学生们积极的对本节知识、学法进行归纳总结,对对不理解的问题课下进行反思。

  第六环节 布置作业 能力延伸

  基础题:1.习题2.1 第 1,2,3,4,5题

  提高题: 2.已知一个角的补角是这个角余角的4倍,求这个角的度数。

  3.如图,将一个长方形纸片按如图所示的方式折叠,使点A落在点A’处,点B落在B’处,并且点E,A’,B’在同一条直线上。

  问题1:∠FEG等于多少度?为什么?

  问题2:∠FEA与∠GEB互余吗?为什么? 问题3:上述折纸的图形中,还有哪些(除直角外外)相等的角?

  【设计意图】:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了作业分层,可以让不同程度的学生都能有不同的收获。

  教学效果及推广:

  课程标准要求初中学生在操作感知的基础上渗透理性思考,以体现自主学习、合作探究理,而七年级大部分学生的自主探索、合作意识不强,但对数学学习有着较浓厚的兴趣,思维比较开阔,在数学课堂中抓住学生的认知水平,从生活实际出发,培养学生学习兴趣、建立自信,亲身经历知识的形成,不断提高学生的观察、探索,合作、归纳等能力。另外班中还存在相当一部分学习有困难的学生,对于这部分学生应给予更多的关注,通过同桌儿小组学习等方式,让能力较强的学生带动这些学生尽量给能力较弱的学生创造表现的机会,使各层次的学生都能在学习中体验成功。

  本课例较好实现了信息技术与传统教学的优势互补,搭建支架帮助学生实现从操作感知到自主探索、合作交流,充分体现学生的主体地位,从而顺应课程改革,提高课堂效率。

  课程建设情况:

  数学来源于生活,又运用于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,激发了学生的学习兴趣,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,体验了知识的形成过程和发现的快乐,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境,同时联系生活,融合建模思想,让学生体会学习数学的乐趣。以小组竞赛的形式完成课堂检测,既对本节重点知识进行了考查,活跃了课堂气氛,又培养了学生拼搏进取的精神。

  启示:课堂上让学生充分发表自己的见解,从激励学生的角度出发,给予学生一个充分展示自我的舞台。在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。

七年级数学下册教案6

  平方根教学设计

  一、情景引入(复习引入)

  1、求下列和数的算术平方根4、9、100、9/16、0.25

  2、如果一个数的平方等于9,这个数是多少?

  讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

  又如:,则x等于多少呢?

  二、探索新知

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  求一个数的平方根的运算,叫做开平方.

  例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

  2、观察:课本P45的图6.1-2.

  图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

  例4求下列各数的平方根。

  (1) 100 (2) (3) 0.25

  3、按照平方根的概念,请同学们思考并讨论下列问题:

  正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?

  一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

  例5说出下列各式的意义,并求出它们的值。

  归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

  4、堂上练习:课本P46小练习1、2、3

  三、归纳小结(学生归纳,老师点评)

  1、什么叫做一个数的平方根?

  2、正数、0、负数的平方根有什么规律?

  3、怎样求出一个数的平方根?数a的平方怎样表示?

  四、布置作业

  P47-48习题6、1第3、4题。

  五、板书设计:

  6.1平方根

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  2、a的平方根记为:

  3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

  《平方根》同步练习题

  1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

  《6.1平方根》课时练习含答案

  1.下面说法正确的是( )

  A.4是2的平方根

  B.2是4的算术平方根

  C.0的算术平方根不存在

  D.-1的平方的算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级数学下册教案7

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的`边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

  第八环节 作业布置

七年级数学下册教案8

  人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案

  课题: 10.1 平方根(1)

  教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

  3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

  教学难点 根据算术平方根的概念正确求出非负数的算术平方根。

  知识重点 算术平方根的概念。

  教学过程(师生活动) 设计理念

  情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.

  这节课我们先学习有关算术平方根的概念.

  请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对

  本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知

  幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的`主要内容,以及研究这些内容的大体思路.

  提出问题

  感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值.

  练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题

  就是已知正方形的面积求正方形的边长,这与学生以前学过的

  已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

  归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

  一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.

  也就是,在等式 =a (x≥0)中,规定x = .

  思考:这里的数a应该是怎样的数呢?

  试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

  想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。

  算术平方根的概念比较抽象,原因之一是学生对石这个新

  的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.

  应用新知 例.(课本第160页的例1)求下列各数的算术平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为

  例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.

  探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

  教科书在边空提出问题“小正方形的对角线的长是多少”,

  这是为在10.3节介绍在数轴上画出表示 的点做准备.

  小结与作业

  课堂小结 提问:1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根?

  布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。

  4、 备选题:

  (1)判断下列说法是否正确:

  i. 是25的算术平方根;

  ii. 一6是 的算术平方根;

  iii. 0的算术平方根是0;

  iv. 0.01是0.1的算术平方根;

  ⑤一个正方形的边长就是这个正方形的面积的算术平方根.

  (2)下列各式哪些有意义,哪些没有意义?

  ①- ② ③ ④

  (3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

  在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算

  术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.

  通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣

  的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.

  通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.

七年级数学下册教案9

  【教学目标】

  1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

  2.发展学生的'形象思维能力,和数形结合的意识。

  3.用坐标表示平移体现了平面直角坐标系在数学中的应用。

  4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。

  重点:掌握坐标变化与图形平移的关系。

  难点:利用坐标变化与图形平移的关系解决实际问题。

  【教学过程】

  一、引言

  上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。

  二、新

  展示问题:教材第75页图.

  (1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位

  长度呢?

  (2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

  (3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

  规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(

  ,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).

  教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐

  标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

  例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).

  (1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点

  ,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?

  (2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点

  ,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?

  引导学生动手操作,按要求画出图形后,解答此例题.

  解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向

  左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC

  向下平移5个单位长度得到.

  课本P77思考题:由学生动手画图并解答.

  归纳:

  三、练习:教材第78页练习;习题7.2中第1、2、4题.

  四、作业布置第78页第3题.

七年级数学下册教案10

  教学目标:

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点:

  数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题

  教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

  探究新知

  教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论

  问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结

  请学生总结:

  1, 数轴的.三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业

  1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学下册教案11

  教学目标

  1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2,能区分两种不同意义的量,会用符号表示正数和负数;

  3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点

  正确区分两种不同意义的量。

  知识重点

  两种相反意义的量

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题

  上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子

  仅供参考.

  师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是--,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

  密性,但对于学生来说,更多

  地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

  趣,所以创设如下的问题情境,以尽量贴近学生的实际.

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解.

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

  这阶段主要是让学生学会正数和负数的表示.

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

  问题4:请同学们举出用正数和负数表示的`例子.

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习教科书第5页练习

  小结与作业

  课堂小结围绕下面两点,以师生共同交流的方式进行:

  1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业教科书第7页习题1.1第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

  或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实

  存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

  子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

  体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

  的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

七年级数学下册教案12

  教学目标

  1.使学生受到初步的辩证唯物主义观点的教育。

  2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。

  教学重点和难点

  把比转化成分数。

  教学过程设计

  (一)复习准备

  2.甲数与乙数的比是4∶5。

  ①甲数是乙数的几分之几?

  ②乙数是甲数的几分之几?

  ③甲数是甲、乙总数的几分之几?

  ④乙数是甲、乙总数的几分之几?

  3.出示投影图:

  师:看到此图你能想到什么?

  学生说,老师写在胶片上:

  ①女生与男生的比是3∶2。

  ②男生与女生的比是2∶3。

  4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?

  60÷5=12(吨)

  这种解答的方法,在算术上叫什么方法?

  刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。

  如:你们单元住着18家,每月交的水电费能平均分配吗?

  又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?

  比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)

  (二)学习新课

  1.出示例题。

  例1第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?

  学生读题,分析题中的条件与问题,教师把条件与问题简写出来:

  然后再让学生带着三个问题去思考。

  (1)两种作物一共几份?怎样求?

  (3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?

  分析:

  ①用一个长方形表示全部土地。(画图)

  ②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)

  师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。

  观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?

  (板书)总份数:3+2=5

  3∶2,实质都表示倍数关系。现在这道题能够解决了。

  粮食作物多少公顷?怎么算?

  经济作物多少公顷?怎么算?

  验算:

  ①求总数240+160=400

  ②求比240∶160=3∶2

  答:粮食作物240公顷,经济作物160公顷。

  (附图)

  这道题就是“按比例分配”的问题。解决这个问题的关键是:首先

  多少。

  师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:

  已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。

  2.试一试。

  抓住主要矛盾练习,运用规律解决问题。

  把45棵树苗分给两个中队,使两个中队分得的树苗的`比是4∶5,每个中队各得几棵树苗?

  总份数是几?怎么算?一中队占几分之几?二中队占几分之几?

  ①总份数4+5=9

  验算:①总棵树20+25=45(棵)

  ②比20∶25=4∶5

  答:一中队得20棵,二中队得25棵。

  (三)巩固反馈

  1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?

  2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?

  3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?

  以上三题只列出主要算式即可。

  4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?

  分析条件、问题以后让学生讨论:

  ①三个班植树的总棵树是几?

  ②题目要求按什么比?人数比是几比几?

  ③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?

  试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)

  5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?

  (这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)

  6.看图编一道按比例分配题解答。

  7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)

  方法1

  8+1=9

  方法2

  5.4÷9=0.6(千克)

  0.6×1=0.6(千克)

  0.6×8=4.8(千克)

  方法3

  方法4

  5.4÷(8+1)=0.6(千克)

  0.6×8=4.8(千克)

  方法5

  解:设氢为x千克。

  5.4-x=8x

  5.4=9x

  x=0.6

  5.4-x

  =5.4-0.6

  =4.8

  方法6

  解:设氧为x千克。

  x=(5.4-x)×8

  x=43.2-8x

  9x=43.2

  x=4.8

  5.4-x

  =5.4-4.8

  =0.6

  以上方法4,5,6要写全过程。

七年级数学下册教案13

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的`量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

七年级数学下册教案14

  七年级数学教案

  1.2 一元一次不等式组的解法

  2.2二元一次方程组的解法

  2.3二元一次方程组的应用(1)

  第10教案

  教学目标

  1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

  2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。

  3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

  教学重点

  1.列二元一次方程组解简单问题。

  2.彻底理解题意

  教学难点

  找等量关系列二元一次方程组。

  教学过程

  一、情境引入。

  小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

  二、建立模型。

  1.怎样设未知数?

  2.找本题等量关系?从哪句话中找到的?

  3.列方程组。

  4.解方程组。

  5.检验写答案。

  思考:怎样用一元一次方程求解?

  比较用一元一次方程求解,用二元一次方程组求解谁更容易?

  三、练习。

  1.根据问题建立二元一次方程组。

  (1)甲、乙两数和是40差是6,求这两数。

  (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

  (3)已知关于求x、的方程,

  是二元一次方程。求a、b的值。

  2.P38练习第1题。

  四、小结。

  小组讨论:列二元一次方程组解应用题有哪些基本步骤?

  五、作业。

  P42。习题2.3A组第1题。

  后记:

  2.3二元一次方程组的应用(2)

  第11教案

  教学目标

  1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

  2.提高分析问题、解决问题的能力。

  3.体会数学的应用价值。

  教学重点

  根据实际问题列二元一次方程组。

  教学难点

  1.找实际问题中的相等关系。

  2.彻底理解题意。

  教学过程

  一、引入。

  本节课我们继续学习用二元一次方程组解决简单实际问题。

  二、新课。

  例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

  探究: 1. 你能画线段表示本题的'数量关系吗?

  2.填空:(用含S、V的代数式表示)

  设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。

  3.列方程组。

  4.解方程组。

  5.检验写出答案。

  讨论:本题是否还有其它解法?

  三、练习。

  1.建立方程模型。

  (1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。

  (2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

  2.P38练习第2题。

  3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

  四、小结。

  本节课你有何收获?

  五、作业。

七年级数学下册教案15

  教学目标

  1.探索并了解三角形的外角的性质。

  2.利用平行线性质来证明三角形外角的性质。

  3.利用三角形内角和以及外角性质进行有关计算。

  4、通过观察、实验、探索等数学生活,体验数学的美。

  教学重点:掌握三角形外角的三个性质

  教学难点:利用平行线证明三角形外角性质

  学情分析

  通过前面几节课的学习,学生已经掌握了三角形的基本概念,知道三角形的内角和为180°,三角形的外角与其相邻的内角是互补关系。这就为本节课的学习奠定了基础。本节课应注重渗透数学说理过程,从简单的.问题中逐步培养学生运用几何语言的能力。

  教学准备

  多媒体、课件、三角板。并让学生课前准备好三角形纸片

  教学过程

  复习提问

  1.什么叫三角形的外角?三角形外角和它相邻内角之间有什么关系?

  2.三角形内角和等于多少度?

  (由学生回答上述问题)

  设计意图:

  回顾上节课学习内容,为本节课的学习做好铺垫。

  讲授新课

  1.学一学:

  自学课本47页长方形框上面的内容。然后回答下列问题:

  (1)找出△ABC(如图)的外角,以及与这个外角相邻的内角、不相邻的内角。(2)外角与其相邻的内角之间的关系呢?

  (3)外角与其不相邻的内角又会有什么关系

  呢?这将是我们这节课要探索的主要内容。

  设计意图:以学生自学的形式,来掌握与本节课相关的几个基本概念,并通过问题(3)进行设疑,引出这节课的重点内容。

【七年级数学下册教案】相关文章:

七年级下册数学教学计划 数学七年级下册05-05

七年级下册教案02-07

七年级数学下册教学设计12-15

七年级数学下册的教学计划06-05

七年级下册数学教学计划06-09

七年级数学下册教学计划06-14

七年级数学下册的教学计划[必备]05-24

五年级数学下册教案05-24

(精华)七年级下册数学教学计划14篇09-07