小数的意义教案
作为一位杰出的教职工,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。那么应当如何写教案呢?以下是小编收集整理的小数的意义教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
小数的意义教案1
[教学内容] 小数的意义(第2-5页)
[教学目标]
1、结合具体情境,体会生活中存在着大量的小数。
2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。
[教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。
[教学准备] 学生、老师准备计数器。
[教学过程]
一、生活中的小数
(事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的价格用到小数外,还在哪些地方见到过小数。
结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。
二、小数的意义
1、自学小数的意义(看书第3页)
2、小组交流
3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。
4、以1米为例结合具体的数量理解小数
把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。
5、归纳小数的意义
通过学生的讨论归纳出小数的意义。
三、小数部分的数位及读写:
1、小数部分的数位及数位间的进率
先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的`第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。
在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。
2、小数的读写
让学生试读,注意提醒学生小数部分的读法与整数部分不同。
3、写一写、读一读、说一说。
对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。
四、数学游戏:
通过数和形的对应,加深对各数位间关系的理解。
五、作业:
第5页1-4
[板书设计]
小数的意义
千 百 十 个 十 百 千
位 位 位 位 ?分 分 分 数位
位 位 位
整数部分 小数点小数部分
小数的意义教案2
学习目标:
1、体会小数所表示的意思,理解小数的意义。
2、理解和掌握小数意义。
教学重点:通过练习,体会小数的`意义,知道小数所表示的含义。
教学难点:通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:学生、老师准备计数器、小黑板
教法:小组合作交流法
学法:小组合作学习
教学课时:2课时
学习过程:
一、情景导入,呈现目标
1、你的身高是多少?你会用小数来描述吗?
2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。
二、探究新知(自学后完成下面问题)
1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。
2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。
3、1、11表示()元()角()分。
三、合作探究,当堂训练
1、用数表示下面各图中得涂色部分?(课本第2页第2题)
2、想一想填一填?(学生独立完成)
3、自己画一方格纸,并画出0、1、0、5、0、6?
4、找一找生活中的小数,小组交流,选代表汇报。
四、精讲点拨(根据学生出现的问题进行精讲。)
五、学习收获,自我总结:
1、小组评价:你认为第几小组表现最棒,为什么?
2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。
课后反思:(略)
小数的意义教案3
教学内容: 小数的意义
教学目标:1、使学生理解小数的意义。
2、使学生认识数学知识源于实际生活,用于实际生活。
3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。
4、激发学生大胆质疑、问答,培养创新意识。
教学重点:理解小数的意义
教学难点:理解三位小数的意义
教学准备:直尺、课件
教学过程:
课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?
一、看价签,引出小数
1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?
2、看课件。
3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。
4、和小组里的同学说一说自己是怎样想的`?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。
5、汇报:(师选择板书)
6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。
7、汇报:生发现小数与分数之间的关系
二、解决实际问题
1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?
2、测量。以小组为单位:(1)测量身边物体的长度。(2)以米为单位用小数表示出来。(3)把测量结果写在记录单上
(主要解决三位小数)
三、小结
1、有关小数你还知道些什么?你是怎样知道的?
2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?
小数的意义教案4
设计说明
《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:
1.在分类中感知小数。
分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。
2.在数形结合中自主探究小数。
《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。
3.找准起点,促进知识的迁移。
小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的.类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。
课前准备
教师准备 多媒体课件
学生准备 米尺
教学过程
⊙在分类中感知小数
1.在分类中感知小数。
师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)
老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的过程中理解一位小数、两位小数……)
2.导入新课。
师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)
设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。
⊙探究新知
1.了解小数的产生。
(1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)
(2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?
(学生可能感到很困惑,有的学生可能会想到用分数表示)
(3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。
2.教学小数的意义。
(1)认识一位小数。
①课件出示米尺图。
把1米平均分成10份,指一指每一份所对应的位置。
②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)
③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)
④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米
0.7米)
⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)
预设
生1:我发现分母是10的分数,可以写成一位小数的形式。
生2:我发现一位小数表示的是十分之几。
⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
(2)认识两位小数。
①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]
②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)
(3)认识三位小数。
师:把1米平均分成1000份,每份长多少?
小数的意义教案5
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的`什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
小数的意义教案6
[教材分析]
这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。
[教学内容]
义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。
[教学目标]
1.使学生经历实际测量等活动,了解小数的产生过程。
2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。
3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。
[教学重点、难点]
理解小数的意义
[课前准备]
课件,课前调查的数据资料
[教学过程]
(一)创设情境
1.感受生活中整数和分数的运用。
(1)课件出示。
一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一
(2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们
得不到正好的整数结果时,可以用分数来表示。
2.感受生活中小数的运用,质疑反思,体会小数的产生。
(1)学生介绍课前搜集到的数据信息
(2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?
(3)抓住现实信息引发思考
提问:生活中,我们在哪些时候会常常用到小数?
让学生自己动手测量桌子的长度或数学书封面的长和宽
3.揭示课题:
看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。
(设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)
(二)研究改写方法,探究小数的`意义
1.1米
初步探究一位小数的改写。
(1)出示线段图。
(2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?
①(学生预设:把1米平均分成10份,每份是米。)
②也可以用小数来表示,每一份是0.1米。
③其中的两份用小数可以怎样表示,你怎么想?
(学生预设:把1米平均分成10份,每两份是米,小数是0.2米)
④图中还有哪部分表示0.1?(请学生指图)
(3)理解0.2并感知0.1与0.2有什么关系
①哪部分表示0.2?想一想对0.2你还能说些什么?
②0.2与0.1有什么关系?
(0.1+0.1=0.2,0.2是两个0.1…)
③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。
④对比:米与0.1米,米与0.2米…有怎样的关系?
⑤观察米=0.1米,米=0.2米,…你发现了什么?
⑥提问:一位小数表示什么?
2.在迁移辨析中理解两位小数的改写。
(1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?
(2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。
(根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)
师:同学们你们观察上面这些算式,你们有什么发现?
(学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)
(3)练习:说出小数的意义
课件呈现:0.6、0.09、0.12、0.86、0.1
(设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)
3.深入、灵活理解三位小数的改写
(1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?
(2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?
(3)课件出示三组数据。
第一组:1/100023/100026/1000
第二组:3/100043/100089/1000
第三组:9/100065/10008/1000
(4)提出要求:请小组合作自选一组分数,一边改写一边讨论。
4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。
5.拓展:请同学们想一想四位小数表示多少?五位小数呢?
(设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)
(四)认识小数的计数单位和进率。
1.回顾整数的计数单位
师:回忆一下,我们都已经学习了哪些计数单位?
(个、十、百、千、万、十万、百万、千万、亿)
2.说说它们之间有什么关系?
3.1个一是10个(),是100个(),是1000个(),是10000个()…
4.提问:所以小数的计数单位应该是什么?
5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。
6.依照这一体系,你能说说小数的计数单位间的进率吗?
(五)巩固练习
1.填数(数学书第51页“做一做”)
2.比一比(数学书第55页练习九第1题)
3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。
(六)畅谈收获
通过这节课的学习,你有哪些收获?还想了解什么?
(设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)
[板书设计]
小数的产生和意义
1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米
2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米
3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米
一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几
小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……
每相邻两个计数单位之间的进率为10。
小数的意义教案7
教学目标
(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。
(二)通过归纳整理,提高学生的概括能力。
教学重点和难点
熟练掌握小数乘除法的计算法则,提高学生计算的准确率。
教学过程设计
(一)归纳整理小数乘除法的意义
1.口算下面各题,并说出各算式的意义。
15×3 1。5×3 15×0。3 15÷3
28×2 2。8×2 28×0。2 2。8÷2
25×5 2。5×5 2。5×0。5 2。5÷0。5
12×4 1。2×4 0。12×0。4 0。12÷0。4
2.思考:
①小数乘法的意义有几种情况,是按什么划分的?分别是什么?
②小数除法的意义是什么?
讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)
3.比较归纳、整理:
看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?
讨论完成下表:
(二)复习小数乘除法的计算法则
1.小数乘法的计算法则。
(1)说出下面各题的积中各有几位小数。
23×0。5 21。4×0。7 27。5×12。03 1。84×0。026
提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)
(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?
①0。4×2。5=(1);②0。075×0。52=(0。039)。
提问:
①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)
(3)计算并验算:
67×75= 836×25= 125×24=
订正后回答:
0。67×7。5= 8。36×0。25= 0。125×2。4=
小结:
小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?
讨论得出:
相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。
不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(4)口算:
0。8×4= 4×0。8= 0。05×20= 20×0。05=
0。03×9= 9×0。03= 1。9×5= 5×1。9=
观察上面的算式:谁的积大于被乘数?谁的.积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)
练习:在下题的○中填上>,<或=。
①1。6×1。2○1。6; ②1。4×0○1。4;
③0。24×5○0。24; ④3。7×2。1○3。7;
⑤0×7○0; ⑥0×2。8○0。
上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)
2.小数除法的计算法则。
(1)计算并验算(P34:6):
1。89÷0。54= 7。1÷0。125= 0。51÷0。22=
计算后订正,提问:
①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)
②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)
(2)口算:
4。2÷0。6= 1。5÷5= 3。2÷0。8= 2÷4=
哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?
(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)
练习:在下面的○中填上>,<或=。
30÷0。6○30 1。8÷9○1。8 0÷0。2○0
3。6÷4○3。6 27÷0。3○27 0÷1。2○0
上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)
(三)综合练习
1.口算:
39。78×1= 3。6÷3。6= 2。87×0=
1×0。56= 7。8÷1= 0÷2。87=
“1”与“0”有什么特性?
2.计算并求近似值:P35:2。
小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)
3.作业:P35:1,3。
课堂教学设计说明
复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。
通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。
板书设计
整数乘法:
4×25=100
75×52=3900
小数乘法:
小数除法:
小数的意义教案8
设计说明
针对本节课的教学内容和知识特点,在教学设计上突出了以下几点:
1.注重铺垫,以旧引新。
本节课通过对整数数位顺序表的回顾,引导学生运用迁移、类比的方法学习小数数位顺序表,体会知识的内在联系。
2.自主构建,交流补充。
教材为学生呈现了小数数位顺序表,数位和计数单位一一对应。教学设计引导学生认真观察数位顺序表,并且同具体的小数相结合,自主建模,通过交流使学生掌握小数的数位顺序和计数单位,明确小数的相邻两个计数单位间的进率是10,为学习小数的加法和减法奠定基础。
3.借助生活经验理解小数的性质。
借助教材7页“试一试”的情境引导学生进行观察、讨论,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,小数的大小是否改变?鼓励学生大胆猜想,利用生活经验进行判断,并用多种方法进行验证,引导学生主动探究,培养学生发现问题、分析问题和解决问题的能力。
课前准备
教师准备 PPT课件 计数器
学生准备 数位顺序表
教学过程
第1课时 小数的意义(三)(1)
⊙复习导入
1.整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?[一(个)、十、百、千……]相邻的两个计数单位间的进率是多少?(相邻的两个计数单位间的进率是10)
2.说出下面各数中的“6”表示的意义。
236 6097 65 36000 486020
3.小数和整数一样,也有计数单位,也按照一定的顺序排列,各数位上的数表示的意义也不相同。这节课我们就来研究一下小数的数位顺序。
设计意图:通过复习整数数位顺序表及各数位上的数所表示的.意义,唤起学生对已有知识的回顾,同时也为新知识的学习做好铺垫。
⊙探究新知
1.观察情境图,交流信息,提出问题。
(1)观察情境图,交流信息。
师:同学们,你们坐过地铁吗?你们知道地铁的最高运行速度是多少吗?(课件出示教材6页例题情境图)
师:说一说你从画面上获取了哪些信息。
预设 生1:通过观察画面,我知道了北京地铁10号线列车的最高运行速度是80千米/时。
生2:通过观察画面,我知道了北京地铁10号线列车的最高运行速度约为22.222米/秒。
(2)提出问题。
师:22.222各数位上的数都是2,你知道其中的“2”分别表示多少吗?
2.认识小数部分的数位,理解各数位上的数的意义。
(1)观察计数器,认识小数数位。
师:(出示计数器)计数器上有一个小数点,小数点右面第一位是十分位,第二位是百分位,第三位是千分位……
(2)借助计数器说一说22.222各数位上的数分别表示的意义。
①在计数器上拨出22.222。
②讨论交流各数位上的数的意义。
师:十分位上的“2”表示多少?
引导学生看下面的直观图,明确十分位上的“2”表示2个,也可以表示2个0.1.然后完成填空。
③回顾:十位和个位上的“2”分别表示多少?
小数的意义教案9
教学内容来源:
小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:
《小数的意义》
课时:
第一课时
授课对象:
四年级学生
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
教学过程
教学环节学生的学教师的教评价要点
环节一复习导入,情境感知教师利用米尺和书本的导图,深刻体会小数的必要性;量一量数学课本的.长度,小组交流汇报表示方法。教师引导学生观看导图,通过分享生活中用到数的例子,引出小数,感悟小数产生的必要性。引导学生小组合作,用米尺测量数学课本的长度,再交流汇报表示方法,直观感知小数的必要性。进而引出今天的主题“小数的意义”。通过说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。
环节二借助直观,迁移推理学生思考并归纳总结小数的表示方法,理解并归纳出一位小数的意义。小组合作,独立探究两位小数和三位小数的表示方法,理解并归纳出两位小数和三位小数的意义。教师借用米尺,直观描述:“把一米的尺子平均分成10份,每份是1dm,用米作单位,用分数表示十分之一米,也可以用0.1m来表示”,引导学生思考说出用分数和小数表示3dm和7dm;引导学生观察并归纳总结,描述自己的发现,体会抽象的数学思想方法,理解一位小数的意义。引导学生借助直观迁移,通过小组合作交流,独立探究的方法理解两位小数和三位小数的具体意义。会理解并归纳出一位小数的意义,会探究出两位小数和三位小数的意义,体会抽象和推理的方法,达成目标1。
环节三自主探究,获得新知学生自学课本,交流汇报自己的收获,说一说小数的计数单位及自己对相邻两个计数单位间的进率的理解。提问:“默读课本,看看还有什么新的发现?”引导学生自学课本,了解小数的计数单位和相邻两个计数单位间的进率。会说出小数的计数单位是0.1、0.01、0.001及相邻两个计数单位间的进率是10,达成目标2。
环节四巩固新知,学以致用学生独立解决“找朋友”,动动手“写一写”,集体交流“说一说”。呈现“夯实基础”,“培优提升”两个层次的习题,引导学生找一找,写一写,说一说,巩固新知。会独立解决习题,达成目标1,2。
环节五回顾反思,归纳小结学生尝试总结。教师引导学生自主归纳:“1.通过今天的学习,你有哪些收获?2.你是通过什么方法获得的?”教师适时补充。至少能说出一方面的收获。会说出小数的意义及运用抽象和推理的数学思想方法。
课后反思:
本节课通过创设生活情境,帮助学生体会了小数产生的必要性,激发了学生的兴趣。
通过课中学生说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。学生的积极性不高,今后设计时应该站在学生的角度上,多设计学生喜爱的教学形式。不过整个学习过程层层递进,学生通过想一想、测一测、数一数、说一说等多种活动进行观察、思考,逐步学习到小数的意义。这样的教学不仅符合学生的认知规律,而且渗透了数学思想方法,既符合学生的认知规律,又有利于增加学生的实际认知,让学生从自己的身边发现数学知识,进一步培养学生的能力,理解小数的意义。
教学过程应该是以学生为主体的过程,我今后会多让学生自己去发现、探讨、解决问题,他们身上有很大的潜力有待挖掘。作为教师,我们要相信自己的学生,他们可以学的更好。
小数的意义教案10
教学目标
1.了解小数是如何产生的,理解和掌握小数的意义。
2.明确小数与分数之间的联系,掌握小数的计数单位以及它们之间进率。
3.经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,培养动手实践、合作探究的学习习惯。
教学重难点
重点:理解和掌握小数的意义、小数的计数单位以及它们之间的进率。
难点:理解小数的'计数单位以及它们之间的进率。
教学工具
课件
教学过程
一、复习导入
师出示课件(m,dm,cm)并问到:首先来见见几位老朋友,你还认识它们吗?谁来读一读?
指一名学生试读
师:一起读
生齐读。
师:想一想,括号里应填几?
指名回答。
出示课本情境图
师:他们测量的结果分别是多少?
生:1米1分米、1米2分米
师:如果只用米作单位,该怎样表示呢?
生:1.1米、1.2米(师板书)
师:生活中,在哪些地方可以见到小数?来看几幅图片。(课件出示生活中的小数)
师:我们把小数点后面有一个数的小数叫做一位小数,找一找还有一位小数吗?
小数点后面有两个数的叫做两位小数,能找一找吗?
谁能说一个三位小数?
师:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。这节课我们继续认识小数。(板书课题:小数的意义)
二、探究新知
1、探究一位小数的意义
师出示课件:把一米平均分成十份,这里的一份是多少?
生:一分米
师:用分数表示是多少米呢?生:十分之一米
师:用小数表示是多少米呢?
生:0.1米
师:把一米平均分成10份,1份是1分米,用分数表示是十分之一米,小数是0.1米。这里还有两个括号需要填写,大家独立完成,可以吗?
生完成,师指名回答,并让生说一说是怎么想的,集体评价。
师:观察这些分数和小数,你有什么想说的吗?
生如果有困难,师引导:观察这些分数的分母是几?小数是几位小数?
得出结论:分母是10的分数可以用一位小数表示。(师板书)
师:理解了吗?考考你,完成作业纸巩固练习1
生完成,指名回答,集体订正。
2、探究两位小数的意义
师:刚才我们把一米平均分成10份,如果平均分成100份,会是什么样子呢?来看一下。(课件出示)
师:其中的一份是多少呢?
生:1厘米
师:用分数表示是多少米呢?
生:一百分之一米
师:用小数表示呢?
生:0.01米
师:真聪明,那么后面的括号继续交给你独立完成。
生完成,师指名说,集体评价。
师:再来观察一下这些分数和小数,又有什么发现呢?
生交流,得出:分母是100的分数可以用两位小数表示。(师板书)
师:学会了吗?还得考考你。请大家完成作业纸上巩固练习2
生独立完成,指名回答,集体订正。
3、探究三位小数的意义
师:把一米平均分成1000份是什么样子呢?又会有怎样的发现呢?
现在把这个任务交给你和同桌,交流讨论,完成第三个探究。
生生合作交流,师巡视。
生完成,汇报结果,集体订正。
师:观察这里的分数与小数,能得到一个结论吗?
生:分母是1000的分数可以用三位小数表示。(师板书)
4、推想、概括小数的意义
师:试想一下:把一米平均分成一万份,其中的一份用分数怎样表示?小数呢?如果平均分成十万份呢?
师:能不能把我们刚才的这些发现概括成一句简洁明了的话呢?
生交流,师引导说出:分母是10、100、1000......的分数可以用小数表示。(师板书)
师:现在把我们所学的知识应用起来,请大家完成作业纸《应用感受,巩固意义》
生完成,指名回答,订正。
5、认识小数的计数单位与进率
师出示课件:思考一下,0.3里有几个0.1?
生:0.3里有3个0.1
师:0.06里有几个0.01呢?0.007里有几个0.001呢?
生依次回答.
师:0.1、0.01、0.001写成分数分别是多少呢?
生:十分之一、百分之一、千分之一
师:小数的计数单位就是十分之一、百分之一、千分之一......,分别写作0.1、0.01、0.001......
师:再思考:十分之一里有几个百分之一?百分之一里有几个千分之一?
生回答。
师:所以小数相邻两个计数单位的进率是?
生:是10
三、综合应用、拓展提升
生独立完成作业纸上的《综合应用》
第一题:指名回答,集体订正
第二题:指名回答,并说一说是怎样想的。
四、拓展视野
课件出示教材“你知道吗?”指名读一读。
五、课堂小结
这节课你有什么收获呢?
小数的意义教案11
教学目标:
1、结合具体情境,体会生活中存在着大量的小数。
2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。
重点难点:
通过实际操作,体会小数与十进分数的关系,理解小数的.意义,知道小数部分各数位名称及意义。
教法学法:
小组合作交流法、讲练结合法。
教学准备:
小黑板
教学过程:
一、激趣导入
二、黑板有多长
1、教师拿出米尺量黑板的长度。
2、教师将实际所量长度写在黑板上。课本上黑板长度为2米36厘米。
3、教师提出问题:黑板长多少米?
4、学生自己总结方法,先小组交流,各小组选代表汇报。
5、教师公布答案。
三、精讲例题
1、把一米平均分成100份,一份就是1厘米,36厘米就是100分之36米,用小数表示就是0.36米。
2、黑板总长等于2米+0.36米=2.36米
3、自学回答,鹌鹑蛋和鸵鸟蛋的质量分别是多少千克?
4、教师叫学生回答。
四、当堂训练。
1、复习导入,判断对错。(小黑板出示)
(1)把1元平均分成100份,10份是1角。( )
(2)把1000千克平均分成1000份,5份是0.005千克。( )
(3)百分之十二就是0.02。( )
(4)十分之七米用小数表示是10.7米。( )
(5)0.05表示百分之五。( )
(6)3.21是三位小数。( )
(7)0.034写成分数是 ( )
2、写出下面的小数。(9分)
(1)蜂房的容积几乎都是零点二五立方厘米。写作: __________
(2)人的眼睛大约能分辨只有零点零六毫米的物体。 写作:_________
(3)珠穆朗玛峰是世界最高的山峰,海拔八千八百四十四点四三米。
写作:____________________
3、有一个数,十位、十分位、千分位上的数字都是2,其余各位都是0,它是( ),读作( )。(8分)
4、请你用0、3、6、9四个数字(每个只能用一次)按要求组数。
(1)整数部分最大,而小数部分的千分位是6的数是( )。
(2)0不读出来而小数部分是两位小数的是 ( )。
(3)0读出来,而小数部分只有一位小数且不是0的是( )。
五、作业布置
作业本做2、4题,完成相关配套练习。
1、独立完成课本第4页三道练习题。教师集体订正答案。
2、独立完成课本练一练第1题。
板书设计:
小数的意义(三)
小数的意义教案12
【教材分析】
《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。
【设计理念】
《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。
【教学内容】
教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。
【教学目标】
1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。
2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。
3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。
【教学重难点】
1、重点:理解小数的意义。
2、难点:探索分数与小数的关系,深刻理解小数的意义。
【教学具准备】
PPT课件、米尺、彩带两条(2米和0。9米)
【教学过程设计】
一、情景导入
1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”
2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。
提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)
二、教学小数的产生
1、课件出示老师收集的一些图片。
看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)
2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)
师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。
【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。
二、教学一位小数意义
1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?
板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?
(1)那如果3份、7份呢?分别用分数、小数表示是多少?
(2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)
2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)
(学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。
3、教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。
猜想一下两位小数与什么样的分数有关?
三、教学两位小数意义。
1、学习两位小数。
(1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?
(2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示)
(通过学习迁移,引导学生自主学习二位小数。)
教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。
猜一猜:下面老师要将1米平均分成多少份?
(3)、教学三位小数意义。
1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?
1毫米、 1/1000米、0.001米
6毫米、 1/1000米、0.006米
13毫米、 13/1000米、0.013米
2、小结:分母是1000的分数可以用三位小数表示。
是不是只有这三种小数呢?
四、总结小数的意义
1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)
【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。
2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?
3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)
4、反馈:教材第51页做一做。
让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。
【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。
五、认识小数的计数单位和进率。
(1)课件出示智慧闯关第一关
0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100
师:学生讨论完成,并说一说为什么这样想?
师指名回答后小结:像0.3、0.5这样的`一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。
师:同学们猜一猜三位小数的计数单位是什么?写作?
(2)课件出示智慧关第三关
0.1米里面有()个0.01米
0.01米里面有()个0.001米
教师小结:每相邻两个计数单位之间的进率是10。
(3)课件出示智慧关第三关
0.8的计数单位是( ),里面有( )个()。
0.06的计数单位是( ),有6个()。
0.032的计数单位是( ),有()个( )。
【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。
三、课堂巩固
1、练习九第2、5题
2、判断(课件出示)
【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。
四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?
把你的收获告诉同学们。
五、课堂延伸:课件《小数点的历史》
【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。
【板书设计】
小数的产生和意义
米1分米1厘米1毫米
9/10米1/10米1/100米1/1000米
0.9米0.1米0.01米0.001米
小数的意义教案13
一、复习
用分数表示下面的数。
1角=( )元 1分米=( )米 2角=( )元
1厘米=( )米 1分=( )元 1毫米=( )米
二、教学例1:
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05 读作: 零点零五 0.48 读作: 零点四八
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。
根据上面的思路,让学生说明0.48元是1元的48/100 。
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
A、理解:1厘米是 1/100米, 1/100米可以写成0.01米。
B、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
比较:这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数)
我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)
三、数形结合,建立小数的概念。
1、出示例2:把什么看作“1”?(正方形)
看着图形将1/10和1/100 写成小数。学生自主填空后回答。
提问:0.1表示什么?0.01又表示什么?
2、试一试:学生自主练习,进一步体验小数的意义。
3、思考:
观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。
结论:分母是10、100、……的分数可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几……
4、想一想:
1/1000写成小数是多少?29/1000 呢?你能写一写、读一读吗?
B、 进一步体会读法:0.001 读作 : 零点零零一
0.029 读作 : 零点零二九
强调:小数部分的`零要一个一个的读,不能只读一个零。
我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。
5、练一练:
学生自主填空,交流时注意让学生根据小数的意义进行说明。
四、巩固练习:
练习五的1—5题。
练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。
注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。
小数的意义教案14
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。
教学目标:
让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。
实验目标:
1、利用多媒体课件,激发学生认识小数学习小数的欲望。
2、通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义,感受数学与生活的紧密联系,体会小数在日常生活中的作用。
教学准备:
课件、米尺、直尺等。
教学过程:
一、引入新知
课件演示:学生测量黑板的长,课桌长、高的.过程
1、学生自己动手量一量黑板的长,课桌长、高这些数是不是都是整米数?
教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。
2、回忆、练习1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m
教师:关于小数,同学们还想知道什么?板书课题:小数的意义
二、探索新知
1、教学例1
(1)填一填,说一说。(课件出示例1第1个图)①此图用分数、小数该怎样表示?你是怎样想的?说一说:0?7表示把一个正方形平均分成()份,取其中()份。 0?7里面有()个0?1。②像0?1,0?3,0?5,0?7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。
(2)同理说一说。(课件出示后面两幅图)①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?
2、教学例2(认识三位小数)
(1)看一看,填一填。
课件出示①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。
(出示图)学生填分数和用小数表示。
小数的意义教案15
教学目标:
1、通过练习进一步掌握小数加减法的计算方法。
2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。
3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。
教学重点:
小数加减混合运算的方法和简便计算的方
教学难点:
小数加减混合运算的方法和简便计算的方
教法学法:
主动探究法、练习法。小组合作交流法
教学准备:
小黑板
教学过程:
一、复习导入新课
1、复习小数的意义。
2、怎样比较小数的大小。
3、怎样进行小数加减的计算。
二、展示交流。
专题训练一:完成课本18页第一题、第二题。
专题训练二:完成课本18页第三题
专题训练三;完成课本18页第四题。
专题训练四:完成课本18页第五题
专题训练五:完成课本18页第六题。
三、课堂小结
四、作业布置
完成相关配套练习。
五、单元测试
(一)小小知识窗看谁本领高!(25分)
1、0.78里面有( )个0.01,3.6里面有( )个0.1。
2、4个百、5个十、3个十分之一,组成的数是( )。
3、0.050的计数单位是( ),它含有( )个这样的计数单位。
4、58厘米=( )米
540克=( )千克
7元8角3分=( )元
9吨40千克=( )吨
5、小数相邻两个单位之间的进率是( )。
6、10.1千克、1000克、1.1吨、1千克10克按从大到小的顺序排列是
( )﹥( )﹥( )﹥( )。
7、在○里填上<、>、=。
7.9○8.2
0.09○0.12
5.7○5.8
3.61米○362厘米
284克○0.284千克
5.3米○532厘米
8、0.8不改变大小,写成三位小数是( )。
9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。
10、□5.□5,使这个数最小是( ),使这个数最大是( )。
(二)火眼金睛辨对错。(10分)
1、0.3与0.300大小相同,计数单位也相同。 ( )
2、小数点的`后边添上0或去掉0,小数大小不变。 ( )
3、4.4时=4时40分。 ( )
4、整数加法的运算定律同样适用于小数加法。 ( )
5、2.7和2.9之间只有一个小数。 ( )
(三)选择。 (10分)
1、0.9比10少( )
A、0.1
B、9.1
C、9
2、由2、4、5三个数字组成的最大的两位小数是( )
A、4.25
B、2.54
C、5.42
3、大于4.35小于5.35的小数有( )个
A、9
B、10
C、无数
4、8080.80这个数( )位上的零可以去掉。
A、百
B、十
C、百分
5、小红在计算小数减法时,将减数3.8错看成38,得108,那么正确的结果是( )
A、66.2
B、142.2
C、10.8
(四)计算。(32分)
1、口算:(10分)
6.9-6=
0.9+0.6=
1-0.09=
0.9+0.1=
2.7+2.2=
0.2+0.8=
0.7-0.7=
5.5+11=
1.3-0=
9.7-7=
2、列竖式计算:(6分)
27.09-9.28
22.45-19.156
9.07+2.88
3、脱式计算,能简算的就简算:(6分)
15.89-(5.89+6.98)
4.9+12.87-5.38
75.6-10.8-9.2
4、列式计算。(10分)
(1)一个数比2.02与3.28的和多1.3,这个数是多少?
(2)从100.86里减去10.54与20.86的和,差是多少?
(五)解决问题:(18分)
1、五月份某运输公司一队运货30.6吨,二队运货35.08吨,三队比二队多运货2.02吨,三个队五月份共运货多少吨?(4分)
2、妈妈买鞋用去125.4元,买袜子用去13.8元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)
3、光明小学四二班向灾区的小朋友捐款情况如下表
小组: 第一小组、第二小组、第三小组
钱数(元): 50.61、比第一小组少18.29、比第二小组多42.87
(1)第三小组捐款多少元?(2分)
(2)三个小组一共捐款多少元?(3分)
(3)请你提出一个数学问题?并解答。(3分)
(六)智力大比拼(5分)
一桶油连桶重55.1千克,用去一半后连桶重30.1千克,这桶油重多少千克?桶重多少千克?
【小数的意义教案】相关文章:
小数的意义教案03-13
小数的意义教学设计11-25
《小数乘小数》教案03-07
《小数的意义和性质》教学设计05-30
小数的意义教学设计(15篇)01-09
小数的意义教学设计15篇12-22
五年级数学教案小数的意义04-11
小数数学教案10-11
小数点搬家教案08-28