八年级数学下册教学反思
- 相关推荐
身为一名到岗不久的老师,课堂教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,那么应当如何写教学反思呢?以下是小编整理的八年级数学下册教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学下册教学反思1
在新课程改革背景下的生物课堂教学中,教学生"学会学习"已成为现代教育的重要特征。预习就是一种行之有效的学习方法,是培养自学能力的有效途径。现代教学论认为,教学的基本任务之一,就在于培养学生的能力,而培养学生独立获取知识的自学能力又是其中的重要内容。然而。预习又是不少同学所忽视的。如何在教学中指导学生掌握预习方法,激发学习动机,提高自学能力而达到教学目的?下面就谈谈我的一些体会。
预习的过程就是自学的过程,就是凭自己已有的综合能力独立地发现问题、分析问题、解决问题的过程,就是学生独立理解、识记知识的.过程。预习是学习的极为重要的阶段,它的特点是先人一步,它的本质是独立学习。从这个意义上讲,预习就是学习的第一核心。因此,课堂教学应紧紧的抓住了这一点,并且高于这一点。我们在一般教学中的常用的预习就是让学生自己看看课本,或者这节课没事干了让学生预习预习下节课内容。
学生的时间是有限的,而有这么多的学科需要预习,那么该怎样利用有限的时间进行充分的预习
1学生要注意各个学科孰轻孰重,注意时间的分配
2给学生一种预习的思路。可以给学生提示一些知识点。
3让课代表抄一下这节课的学习目标
4老师晚自习可以去辅导学生,让学生有一些预习的思路
5保证充分的时间,时间是预习的保证
这样,使教师在课堂上讲的时间少了,学生自己学习训练的时间多了,学生获得了主体地位,课堂教学过程大部分是学生自学过程,符合学生认知学习规律。真正实现课堂教学以“自主,合作,探究”为主要学习方式。
八年级数学下册教学反思2
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
由于自身数学知识系统与教学经验的缺乏,在本节中也出现了较多的问题:
1.学生的想法有时老师是无法预测的,尽管看似一个较简单的'问题,由于学生自身个体因素的差异,给出的解决方案可能是错的,也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。
2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。
3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。
4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。
5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。
八年级数学下册教学反思3
在教学中,我先通过生活中的实物图形引出梯形的定义,并由学生介绍梯形的有关概念。我们学习平行四边形时,通常会通过添加辅助线转化为三角形。
在例题处理上,我以题组训练的方式出现。从学生熟悉的一个图形出发,放手让学生独立完成对该题目的分析和证明,老师在中间又可以把相关的基本知识点做些复习和回顾。在熟悉图形的基础上,注重图形中所隐含的其它结论。让学生学会不要用孤立的眼光去看一道题,而是要学会去观察出结论之间的相互联系,能用联系的'眼光去解决新的问题。这是几何学习中一种非常重要的方法。
本节课的练习环节,我设计了让学生思维跳跃的部分。进行几何题基本条件的变更,及一题的多种添加辅助线方法证明,对于学生的思维能力有一个非常高的要求。同时也在告知学生:几何的学习是永无止尽的,希望同学们学习几何不要仅仅是为了完成一道道题,而是应该从不同的角度去考虑问题。
上完课后,我发觉自己在教学上还有许多需要改进的地方
八年级数学下册教学反思4
1、本节课初步达到了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化;低起点,顺应着学生的认知过程,设置了随堂练习,在用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去计算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
2、是以讨论的形式呈现给学生例题1,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
不足:(1)学生对于同分母的分式的'加减运算掌握得比较好,但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。
(2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。
八年级数学下册教学反思5
《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。
一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。
二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.
三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。
四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。
五是缺少方程思想和转化思想,使综合类试题痛失分数。
六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。
针对上述问题,痛定思痛,感悟颇多:
第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生独立完成,并进行一定量的训练,才能实现教学的有效性。
第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。
第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。
第四,教学应加大综合训练的力度。目前的综合题已经由单纯的'知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。
第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。
相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。
八年级数学下册教学反思6
本节课的教学目标是:
1、学生通过具体的活动体验事件发生的等可能性,会判断游戏规则的公平性。学会用简单的分数几分之一(几分之几)表示事件发生的等可能性。尝试设计公平简单的游戏方案。
2、通过猜测、验证事物的可能性,明确事物的发生存在概率,并会合理的阐述事情发生的可能性。初步体会假设、验证、应用的数学学习方式。
3、学生在学习探究活动中,感受探究数学活动的乐趣,体验游戏与比赛的公平原则,体验数学与生活间的密切联系学生在潜移默化中养成公平、公正意识,促使学生正直人格的形成。
教学重点:学会用简单的分数几分之一(几分之几)表示事件发生的等可能性。
教学难点:通过猜测、验证事物的可能性,明确事物的发生存在概率。
教学准备:课件、扑克牌、纸盒、转盘、乒乓球、小正方体、长方体、油画棒、记号笔。
本节课我是这样设计的:(通过四个环节进行教学)
1.情境导入
从学生喜欢游戏入手引出可能性这个课题。引起学生的学习兴趣。
2.贯穿游戏,激发探究“可能性”的兴趣
设计抽扑克牌游戏,在游戏中进一步引起学生思考,发现先拿的会赢,从而引起用什么办法解决谁先拿是公平的问题。引入到抽扑克牌。学生通过实验,猜想、验证自己的发现。接下来引入抛硬币活动,引导学生观察、发现其中规律。发现当数据越大时,红牌出现的可能性越接近二分之一。用游戏这根“线”将学生的身心和数学新知牢牢的维系串联起来,让学生学得轻松愉快、兴趣盎然,让教学变得自然流畅、有滋有味,让深奥的史学知识变得浅显易懂、亲近“好玩”。
3.贴近生活,实际感受“可能性”的作用。
让数学生活化,让数学贴近学生的认知起点、贴近学生的生活经验,是本节课的一个亮点。教学中,我利用我和同事要准备下跳棋这一情境引起学生的思考。从而解决书上的错例。并尝试在小组内设计公平的游戏规则。充分挖掘生活中的等可能性事件,充分挖掘数学知识中的生活原型,充分调动学生主动学习的积极性,巧妙而有效的体现了课改理念,让学生较好的掌握了新知:体验事件发生的等可能性及游戏规则的公平性,会求简单事件发生的概率,更让学生深深体会到数学与生活的密切联系、数学知识技能在生活中的作用。
4.实验操作,培养科学精神和综合能力。
教学中,我适时组织学生认真耐心地进行实验操作,并在小组中交流,在课堂上展示,让学生经历科学实验的基本环节:实验操作、记录数据、观察现象、得出结论、揭示规律;还适时引出科学家几千次甚至几万次的实验数据表,让学生感受科学家那种一丝不苟、坚忍不拔的科学态度和科学精神,从小培养学生的`科学态度和科学精神。
课的最后,我在学生已牢固建立诸如“要想公平必须要等分转盘上各个区域”的知识和技能的基础上,创造地进行了趣味提升,即让学生感受“还有不等可能性的存在”的现象,使学生把已学知识灵活运用到事实中,实实在在地提高了学生的分析思考能力和综合运用能力。
整堂课,我始终围绕等可能性这个知识的主轴,以学生熟悉的游戏活动开展教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性体验,学会用概率的思维去观察和分析社会生活中的事物,潜移默化的培养了学生公平、公正的意识,促进学生正直人格的形成。
八年级数学下册教学反思7
在《三角形中位线》的教学中,我设计的教学目标有以下三点:1.了解三角形的中位线的概念;2.了解三角形的中位线的性质;3.探索三角形的中位线的性质的一些简单应用。本节的教学重点和难点有以下两点:1.本节教学的重点是三角形的中位线定理;2.三角形的中位线定理的证明有较高的难度,是本节教学的难点。
在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘边上的AB两点之间的`宽度?办法是只要在池塘外取一点C,取CA的中点D,在取CB的中点E,此时只需求DE的长度,就可知AB的长度。这是为什么呢?此时教材体现的是学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,
(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?
(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用是非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。
八年级数学下册教学反思8
一、教学的成功体验
《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动.
二、信息技术与学科的整合
在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学,为学生创设了生动、直观的.现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的注意力.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是
静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flash动画演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃.
八年级数学下册教学反思9
在本节课的教学中,我按照课本上的思路,在实际过程中,学生作图、观察这个环节比较顺利,多数学生能得出对边相等,对角相等这两个结论,在进一步追问下,学生可以理解用全等知识来证明这两个结论的正确性。板书证明过程这个环节是由教师完成的,因为这个时候学生需要的是规范的证明格式与思路,我的重点放在引导学生将证明思维转化成具体的证明书写,课本上用箭头表示的思路过程非常清晰,但与中考的证明格式要求不同,所以在这个步骤上,花费时间较多。在教师和学生共同完成定理证明后,再引导学生观察这两个全等三角形之间的旋转变换关系,加深对前一章旋转变换的理解。课后的习题讲解时,我采取先让学生说,再书写过程的方式,虽然费时较多,但个人认为对几何证题思路还是有帮助的,从中也发现了不少学生容易出错的地方,部分学生在说思路的时候跳跃性太大,写作证明过程的时候有掉条件的'情况,比如证全等的条件,题目并未直接给出条件,有学生未经证明就用来证明全等。整节课书写证明过程花费的时间较长,课后习题未能处理完,留给学生课后完成。
其实无论采取哪种方式进行本节课的教学,最关键的是让学生理解平行四边形的性质,并会利用性质进行简单的应用,这里需要对学生进行严格的证明书写训练,从几何整体教学来看,公理化体系有助于学生理解后继的特殊平行四边形的性质、判定定理。
八年级数学下册教学反思10
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的基础。
首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。
一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。
过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。
情感态度与价值观:体会数学文化的价值,通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。
二、优化数学教学内容的呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。
1.2002年国际数学家大会在北京举行的意义。
2.电脑显示:ICM20xx会标。
3. 会标设计与赵爽弦图。
4. 赵爽弦图与《周髀算经》中的“商高问题”。
(二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。
1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。
2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。
3.让学生自己任画一个直角三角形,再次验证自己的'发现,在此基础上得到直角三角形三边的关系。
4.电脑演示:锐角三角形、钝角三角形三边的平方关系,从而进一步认识直角三角形三边的关系。
5.通过几个练习,了解直角三角形三边关系的作用。
(三)继续动手操作实践,思考探究,拼图验证猜想。
1.学生动手用准备好的四个直角三角形拼弦图。
2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。
(四)拓展延伸,发挥作为千古第一定理的文化价值。
1.简单介绍勾股定理的文化价值。
2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。
3.电脑演示:欣赏勾股树。
4.推荐进一步课外学习的网址。
5.与课头的“ICM20xx”在中国举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。
本节课开始我利用了导语中的在北京召开的20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。同时出示勾股定理的图形,让学生猜想直角三角形三边之间的关系。然后利用正方形网格验证猜想的正确性,还利用教具在黑板上拼图,启发学生用面积法得出a2+ b2= c2在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师利用多种证法让学生参与勾股定理的探索过程,让学生自己感觉并最后体会到勾股定理的结论,使得这课的重难点轻易地突破,大大提高教学效率,培养了学生的解决问题的能力和创新能力。
八年级数学下册教学反思11
小学已经对平行四边形的性质有一定的了解,对边、对角之间的关系是比较熟悉,无需再进行猜想边与角之间的关系,所以我确认本节的重点是引导学生如何将四边形问题转化为三角形问题,以及利用平行四边形的性质进行推理论证培养学生的合情推理能力、探究问题基本方法渗透。对基本的概念,比如平行四边形,对边,对角,对角线等概念,通过引例结合图形,仅仅是进行了简单的认识,最大限度的实现突出主干。
例题1通过本例巩固平行四边形的.性质,复习勾股定理和平行四边形的面积公式;规范学生运用性质进行说理的书写格式;教师讲解或引导过程中注意培养学生解题的目标意识。
例题2复习平行四边形的定义,平行线的性质等,巩固证明边相等的另一重要方法:等角对等边;
渗透解决问题的常规思路:
思路1:平行四边形---平行四边形的性质---
思路2:观察,猜想图中与,相等的角有哪
些?(寻找中间等量,实现转化目标的)
思路3:假设法,若(结合条件)
与平行四边形ABCD中相一致,假设成立!
环节(四)课堂知识与方法小结,帮助学生梳理知识,整理方法形成知识结构。
环节(五)A组练习比较简单,题型比较常见,覆盖本节基本知识点,要求100%
学生能独立完成。
B组第1题,巩固例题1平行四边形的面积公式,及平行四边形的性质,以及体验假设法探究思路妙处。第2题渗透整体思想,以及体验观察—猜想—验证探究问题的过程:直观感觉图中相等的边与角(为猜想提供依据)猜想,证明猜想。学生在体验中的感受,就会增强学生探究的兴趣,从而形成一种探究的思考方式,能有效的培养学生的创新精神和创新能力,让学生在探究中热爱数学、学好数学.
八年级数学下册教学反思12
在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:
1、课前没很好确定学生的基础知识情况
高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。
2、课堂没完全还给学生
预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。
3、课后练习不能真正落实
学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的`二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。
八年级数学下册教学反思13
这节课我感觉较好的方面是课堂气氛比较活跃,本节课我比较倾向于让学生了解黄金分割,感受生活中所存在的数学艺术,调节一下之前比较枯燥的学习心情,找了很多观赏性的图片,以及生活中与黄金分割有关的内容,所以学生感觉很新奇,积极性也很高。
这里主要说说不足的地方,其中最大的问题在于对教材内容把握不够,概念的理解分析不到位,这点可以从课堂练习和课后作业的反馈情况看出。首先黄金分割的概念没有讲得很清楚。重要的三个比值没有强调到位:较长线段与整条线段的比值是 、较短线段与较长线段的比值是 、较短线段与整条线段的比值是 、两点(黄金分割点)之间的距离与整条线段的.比值是 。其次黄金分割中的分类讨论的思想也由于时间的限制没有渗透。所以学生对概念理解不是很深刻,课堂练习屡屡出错,课后作业也出现不少问题。
北师大版的教材对于我这种经验不是很丰富的老师来说确实是个挑战,内容看似简单,实际包含很多知识点,如果仅仅按教材上课,是远远不够的。因为学生现有的能力有限,如果没有老师的指导,很难进行应用。所以潜心钻研教材是很有必要的,上课之前可以先问问有经验的老师这节课要注意的东西,把握好知识点。
除此之外,除了精心备课,还要关注学生课堂上的参与程度也是很重要的,根据学生的状态适时调节讲授方式会使课堂效率更高。
八年级数学下册教学反思14
本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。
本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的`自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的范围等类型的题目。
另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。
八年级数学下册教学反思15
本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的.过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。
本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。
本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的话,有些问题可以由学生讨论解决。
教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。
【八年级数学下册教学反思】相关文章:
八年级数学教学反思06-22
五年级下册数学教学反思05-18
数学教学反思05-16
数学的教学反思04-22
数学下册教学计划05-31
四年级下册数学教学反思05-17
四年级下册数学教学反思04-05
八年级的数学人教版下册教学计划01-07
数学教学反思最新09-24