二次函数教学反思

时间:2024-05-28 10:04:31 教学反思 我要投稿
立即下载

二次函数教学反思

  身为一名人民老师,教学是我们的工作之一,通过教学反思可以有效提升自己的课堂经验,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的二次函数教学反思,仅供参考,希望能够帮助到大家。

二次函数教学反思

二次函数教学反思1

  二次函数是初中阶段的重要知识点,如何让学生学得好,也是困扰我很久的问题。通过画图,在观察图形中总结出图形的性质,对学生来说不是难点。重点和难点在准确灵活地应用性质。但是要想准确应用,熟记图形与性质是前提,于是我重点放在对“性质的记忆”和“对学生高要求上”。

  强化记忆,功夫在平时。每节课上课一开始,我在黑板上板书上节学过的有代表性的函数,为防止出错,开始以小组或者同为相互检查快速说性质:包括图形、对称轴、顶点坐标、增减性、最值六个方面。每节课都将前几节课学过的函数式板书,学生自然形成习惯。直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。我和学生开玩笑说,必须将函数性质记忆到说梦话都说函数性质的地步。

  深化理解,学生对着自己曾经画过函数说性质,不知不觉中将图像和性质有机的结合在了一起。并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。y=ax2y=ax2+k,y=a(x-h)2+k.

  提高要求。因为手中没有合适的材料供学生练习使用,因此我们每节课印制了两份随堂练习,因为刚学完性质,对学生来说训练题难度不大,开始对学生的要求是最多错一个题,结果发现学生的'错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得A等级。结果发现,学生自然对自己的要求也提高了。当发现自己错一个时,就会反思自己那里没学好。一班的学生平时反映灵活,但是缺少深入细致,必须提高要求,方可让他们耐下心来认真学习。

  同时从学生的答题中,及时发现学生存在的问题,及时提醒学生反思改进。上节课讲过的下次再考照样错,如:李萌。在她的反思中,分析到自己不是智力问题,而是心态和习惯问题,遇到问题不深入细致,导致基础知识的应用出问题。他月考和期中检测均是等级B。“就按这样的习惯学下去,不能考A”“老师,下次我一定考A”我试图在平时的学习中发现她的问题,多么希望她保持好的等级。

二次函数教学反思2

  因为对称轴是x=2,所以-b/2a=2

  所以得a+b+c=0c=3

  -b/2a=2

  解得a=1b=-4c=3

  所以所求解析式为y=-4x+3师:两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下.(同学们开始讨论,思考)

  生B:我认为此题可用顶点式,即设二次函数解析式为

  y=a(x-2)2+k,把(1,0),(0,3)代入,得

  a+k=04a+k=3

  解得a=1k=-1

  故所求二次函数的解析式为y=(x-2)2-1,

  即y=x2-4x+3

  师:非常好.那还有没有其他方法,请大家再思考一下.(学生沉默一会儿,有人举手发言)

  生C:因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以,求解析式为y=-4x+3

  师:设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考.大家再想想看,是否还有其他解题途径.

  (学生们又挖空心思地思考起来,终于有一学生打破沉寂)

  生D:由于图象过点(1,0),对称轴是直线x=2,故得与x轴的另一交点为(3,0),所以可用两根式设二次函数解析式为y=a(x-1)(x-3),再把(0,3)代入,得a=1,

  所以二次函数解析式为y=(x-1)(x-3),即y=x2-4x+3

  师:函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到.(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)

  师:最后,请同学们想一下,通过本堂课的'学习,你获得了什么?

  生1:我知道了求二次函数解析式方法有:一般式,顶点式,两根式.

  生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法.

  二、回顾与反思

二次函数教学反思3

  二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义. 在教学中,我主要遇到了这样几个问题:

  1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。

  2、在细节方面我还有很多的.不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的教学中,我会注意这些方面的教学。

  3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。

二次函数教学反思4

  这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。

  整个教学过程主要分为三部分:

  第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。

  第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a>0时函数y=ax2的性质。探究活动二是独立画出函数y=ax2的图象,然后是自主探讨当a<0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数 y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的.开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  本课的优点主要包括:

  1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

  本课的不足之处表现在:

  1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。

  2、作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历“错误”的过程,这样他们才会懂。正所谓“我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解

  3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

  4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a>0的情况下能得到a越大开口越小,a<0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

二次函数教学反思5

  教学目标的设定:

  一、 教学知识点:

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  (2)、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.

  (3)、 理解一元二次方程的根就是二次函数与y =h 交点的`横坐标.

  二、 能力训练要求:

  (1)、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神。

  (2)、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.

  (3)、通过学生共同观察和讨论,培养合作交流意识.

  三、 情感与价值观要求

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  (2)、 具有初步的创新精神和实践能力.

  教学重点:(1).体会方程与函数之间的联系.

  (2).理解何 时方程有两个不等的实根、两个相等的实根和没有实根.

  (3).理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

  教学难点(1)、探索方程与函数之间的联系的过程.

  (2)、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 解决重难点的方法1、 设问题情境,引入新课

  我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?

  它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转

  化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索这个问题.

二次函数教学反思6

  [教学目标]:

  1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。

  2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。

  3、从学习过程中体会学习数学思想,积累解决问题的数学经验。

  [教学重点和难点]:

  重点:灵活的掌握确定二次函数表达式的过程,得到准确的答案.

  难点:在分析问题的过程中总结数学方法,体会数学思想.

  [教学方法]: 师友合作式学习,引导学生自主思考、师徒交流讨论、师生归纳总结。

  [教学准备]:

  多媒体课件

  [教学活动设计]

  一、课前热身

  1、已知一个一次函数的图象经过点 (2,5)和点(1,3),求这个一次函数的解析式.

  2、这种求函数关系式的方法是什么?有哪些步骤?

  设计意图:让学生回顾如何“用待定系数法求一次函数解析式” 并掌握,待定系数法求解析式的一般步骤,为学习“用待定系数法求二次函数解析式”作好铺垫。

  二、知识梳理

  yaxbxc求二次函数=++的解析式 2

  (1)关键是求出待定系数____________的`值.

  (2)设二次函数解析式的三种形式:

  ①一般式:=++(≠0)yaxbxca2

  ②顶点式:=(-)+(≠0)yaxhka2

  ③交点式:=(-)(-)(≠0),其中、是抛物线与x轴交点yaxx xx a x x1 212的横坐标。

  三、典例探究

  .已知三点坐标,求二次函数解析式1

  【例】已知一个二次函数的图象过点、、-三点,求这 1(0,-3)(4,5)(1,0)个函数的解析式。

  小结:已知三点坐标求二次函数解析式,一般先设二次函数的一般式,再将三点坐标代入所设的二次函数解析式中,得到一个关y=ax+bx+c 2于,的三元一次方程组,解方程组求出待定系数,最后将待定系 abc数还回原解析式即可.

  【练习】已知一个二次函数的图象过点、、-三点,求 1(0,-3)(3,0)(1,0)这个函数的解析式。

  x.已知与轴两交点坐标,求二次函数解析式2

  【例】已知一个二次函数的图象过点三点,求这 2(0,3)(3,0)(1,0)个函数的解析式。

  已知一点和顶点坐标,求二次函数解析式

  【例】已知二次函数图象顶点是--,且经过点,求这个函数 3(1,8)(1,0)的解析式。

  小结:已知二次函数图象上一点和顶点坐标,求二次函数解析式,≠,再将另外+k(a0)一般将二次函数的解析式直接设为顶点式2 y=a(x-h)一点坐标代入求出值,最后还回解析式即可. a

  思考:你能其他方法解这道题吗?

  【例】已知二次函数图象顶点是--,且经过点,求这个函数 3(1,8)(1,0)的解析式。

  四、课堂小结

  确定抛物线的解析式一般需要两个或三个条件,灵活的选用不同形式是解决问题的关键和技巧。

  yaxbxca如果题目无明显特点,可以采用一般式≠(1) =++(0);

  yaxhka如果题目中有顶点,可以采用顶点式≠(2) =(-)+ (0);yaxxxxa≠=(-)(-)(0).

  五、反馈练习

  已知抛物线过点-,、,两点,与轴交于点,且A(10)B(30)yCBC=, 3 2

  求这条抛物线的解析式。

  [课后反思]:

  求函数解析式是初中数学主要内容之一,求二次函数的解析式更是联系高中数学的重要纽带。在求函数的解析式时,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐,甚至解不出题来。在新课标里,求函数解析式与老教材一样,也是中考与升高中的必考内容,在初中阶段,主要学习了正比例函数、一次函数、反比例函数、二次函数的相关知识。其中,学生在学习二次函数的解析式时感到比较困难。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件。在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识。教师不仅是学生的引导者,也学习必备欢迎下载是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获。

二次函数教学反思7

  本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的作用。

  讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线。利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。

  成功之处:

  1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.

  2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神。

  3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的.图象和性质,也为今后探讨其他类函数的性质提供思路.

  4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。

  5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。

  不足之处:

  1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.

  2.作图展示时只说明了有问题的部分而没有展示优秀的部分,无法使学生获得成功的喜悦。

  3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.

  通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。

二次函数教学反思8

  立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。

  最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的'组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷.

  2.本课遵循尊重学生,相信学生,依学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动

  3、在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

二次函数教学反思9

  本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。

  要想灵活应用基础知识解答二次函数问题,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:

  一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论,老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。

  数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的`能力;

  设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:

  (1)如何使他们愿意学,喜欢学,对数学感兴趣?

  (2)如何让学生体验成功的喜悦,从而增强自信心?

  (3)如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?

  (4)培养学生合作学习的互助精神和独立解决问题的能力。

二次函数教学反思10

  二次是函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结合实际,让学生学有所用,在教学中应注意以下几个问题:

  (一)把握好课标。九年义务教育初中数学教学大纲却降低了对二次函数的教学要求,只要求学生理解二次函数和抛物线的有关概念,会用描点法画出二次函数的图像;会用配方法确定抛物线的顶点和对称轴;会用待定系数法由已知图像上三点的坐标求二次函数的`解析式。

  (二)把实际问题数学化。首先要深入了解实际问题的背景,了解影响问题变化的主要因素,然后在舍弃问题中的非本质因素的基础上,应用有关知识把实际问题抽象成为数学问题,并进而解决它。

  (三)函数的教学应注意自变量与函数之间的变化对应。函数问题是一个研究动态变化的问题,让学生理解动态变化中自变量与函数之间的变化对应,可能更有助于学生对函数的学习。

  (四)二次函数的教学应注意数形结合。要把函数关系式与其图像结合起来学习,让学生感受到数和形结合分析解决问题的优势。

  (五)建立二次函数模型。利用二次函数来解决实际问题,重在建立二次函数模型。但是在解决最值问题时得注意,有时理论上的最大值(或最小值)不是实际生活中的最值,得考虑实际意义。

  (六)注重二次函数与一元二次方程、一元二次不等式的关系。利用二次函数的图像可以得到对应一元二次方程的解、一元二次不等式的解集。

二次函数教学反思11

  一、教学目标:

  1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

  3。能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1。体会方程与函数之间的联系。

  2。能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1。探索方程与函数之间关系的过程。

  2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  [活动1] 检查预习 引出课题

  预习作业:

  1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。

  2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。

  师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2] 创设情境 探究新知

  问题

  1。课本P16 问题。

  2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  (结合预习题1,完成课本P16 观察中的题目。)

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  二次函数y=ax2+bx+c的图象和x轴交点

  一元二次方程ax2+bx+c=0的根

  一元二次方程ax2+bx+c=0根的判别式=b2—4ac

  两个交点

  两个相异的实数根

  b2—4ac 0

  一个交点

  两个相等的实数根

  b2—4ac = 0

  没有交点

  没有实数根

  b2—4ac 0

  教师重点关注:

  1。学生能否把实际问题准确地转化为数学问题;

  2。学生在思考问题时能否注重数形结合思想的应用;

  3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的`关系,培养学生的合作精神,积累学习经验。

  [活动3] 例题学习 巩固提高

  问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4] 练习反馈 巩固新知

  问题:(1) P97。习题 1、2(1)。

  师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

  教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

  设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

  [活动5] 自主小结,深化提高:

  1。通过这节课的学习,你获得了哪些数学知识和方法?

  2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

  师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

  设计意图:

  1。题促使学生反思在知识和技能方面的收获;

  2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

  [活动6] 分层作业,发展个性:

  1。(必做题)阅读教材并完成P97 习题21。2: 3、4。

  2。(备选题)P97 习题21。2:5、6

  设计意图:分层作业,使不同层次的学生都能有所收获。

  七、教学反思:

  1。注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2。关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。

  3。强化行为反思

  反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4。优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

二次函数教学反思12

  教材分析:

  本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。

  教学片段:

  本节课我是这样设计引入的。

  [师] y=3x2的图象有何特点?

  [生]很快能说出函数图象以及相关的性质。

  [师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?

  此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。

  [师]y=3x2-6x+5的图象与y=3x2有何关系?

  [生]猜想:向上平移5个单位,向左右平移6个单位。

  [师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)

  教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。

  此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。

  [师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?

  [生]可以先研究y=3(x-1)2的图象。

  前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。

  让学生完成课本P46的表格。

  在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。

  此处的设计是要让学生学会观察,从表格里发现函数图象的平移。

  [师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?

  [生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的`函数图象。

  [师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。

  通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。

  教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。

  反思:

  函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。

二次函数教学反思13

  求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。下面谈谈本人在教学和复习求函数解析式的具体做法:

  一、使学生掌握待定系数法。

  待定系数法是初中数学的`一种重要解题方法,对于每位学生都必须掌握,并能熟练应用此法来求函数的解析式。待定系数法的基本步骤是:假设所求函数的解析式;把已知的量代入函数关系式,联列方程(组);求出方程(组)的解。

  二、让学生明确二次函数两种关系式。

  (1)、二次函数一般关系式:y=ax2+bx+c(a≠0)

  (2)二次函数顶点式:y=a(x—h)2+k

  对于以上这两种函数,要求学生理解关系式,及其性质和图象。

  y=ax2+bx+c(a≠0)这是一个二元二次方程,若要求a、b、c,必须知道三个不同的解,然后联立方程组,从而求出a、b、c的值。

  三、本节课自己的感想

  曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。

二次函数教学反思14

  二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

  本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

  我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

  二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

  三是在整个教学过程中,注重不同层次学生的发展,不同的学生的'个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

  不足之处表现在:

  1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

  2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

  3、由于时间紧张小结的不够完整。

  总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

二次函数教学反思15

  这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax^2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a0时函数y=ax^2的性质。探究活动二是独立画出函数y=-2 x^2的图象,然后是自主探讨当a0时函数y=ax^2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数y=ax^2的两种情况,找出a的`符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  我的优点主要包括:

  1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

  我的不足之处表现在:

  1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。

  2、作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历错误的过程,这样他们才会懂。正所谓我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解

  3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

  4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a0的情况下能得到a越大开口越小,a0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。正所谓:水本无波,相荡乃成涟漪;石本无火,相击而生灵光。只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

【二次函数教学反思】相关文章:

二次函数教学反思04-22

《函数》教学反思05-26

函数的概念教学反思04-15

对数函数教学反思07-02

二次根式教学设计08-01

二次根式教学设计10篇01-27

函数概念说课稿07-18

《正弦函数的性质》说课稿06-15

反思自己的教学反思02-06