[精]高二数学教学计划

时间:2024-10-20 14:15:43 教学计划 我要投稿
立即下载

高二数学教学计划

  时间就如同白驹过隙般的流逝,我们的工作又进入新的阶段,为了今后更好的工作发展,是时候抽出时间写写计划了。什么样的计划才是好的计划呢?以下是小编收集整理的高二数学教学计划,欢迎阅读与收藏。

[精]高二数学教学计划

高二数学教学计划1

  指导思想:

  本学期,我们高二数学组全体成员将在上学期的基础上继续认真贯彻我校的教育教学工作要点,在学校工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索数学教研工作,提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

  一、教学工作

  (一)学科工作目标:

  在高二必修2和理科2-1文科1-1两个模块数学学习的基础上,学生已经掌握了很多基本数学概念,了解了很多数学方法,本学期数学教学的主要任务是培养学生的空间思维和问题的转化能力,具体目标如下:

  1、使学生获得初步的逻辑能力和分析能力,理解相关结论的产生过程,体会其中蕴含的数学检验思想和方法,培养学生自主探究学习的习惯和能力

  2、努力提高学生的化归能力,推理能力和运算能力

  3、提高学生分析和解决数学问题的能力,数形结合的应用能力

  4、提高学生学习数学的兴趣,树立信心,培养数学思维与习惯

  5、努力提高数学教学质量,提高老师业务水平,努力使各层次班级的'数学成绩差距缩小在可控范围之内

  6、加强交流合作,校内,校外学习借鉴,相互听课,相互学习,互相取长补短,与时俱进,教学相长。

  7、在日常工作当中,实现组内资源共享,保持和优化个人特色,同类班级的相关工作做到基本统一。即统一教案、统一练习题。不同层次学生要求分层教学与分层练习。

  (二)教学任务与教材分析

  本学期授课时间约为19周,教学任务期中考试前:数学必修2约45课时;

  期中考试后:文科选修1—1,理科选修2—1,约48课时。机动两周(中秋节、国庆节、期中期末考试)必修2包括空间几何体;点、直线、平面之间的位置关系;直线与方程;圆的方程四章内容。主要是培养学生的空间思维和数形结合解决问题的能力,问题的转化能力,本册书在整个高中数学学习中占很大的比重,也是一个难点,对于文科学生更是挑战,所以在教学过程中要细讲、慢讲,打牢学生基础。文科选修1-1包括常用逻辑用语;圆锥曲线;导数及其应用三章,理科2-1是常用逻辑用语;圆锥曲线与方程;空间向量与立体几何三章;主要是培养学生分析问题解决问题的能力,将形转化为数的解析几何及应用,引导学生由条件到结论的推导形成过程。

  (三)学情分析:

  本学期高二年级共计16个班级,文科6个班级1-6,理科10个班级7-16其中四个宏志班为1班,14班,15班,16班,10个全省班文科2班-5班,理科7班-13班,2个借读班6班和7班,层次明显,学生差异性较大。宏志班学生学习的主动性较好,基础相对较好,多数学生已经能适应高中数学的学习,主要是要注重数学思维与数学学习方法的总结。理科全省班同学层次不齐,主要是有短板现象,有的同学数学很好,有的很糟糕。在教学过程中更应该分层更细一点,注意关注学生学习习惯的培养。文科全省班学生数学基础普遍较弱,数学学习有很大障碍,在平时教学中多注意学习兴趣的培养,注重基础知识教学,螺旋式上升。加大督查力度,促进数学学习。对于借读班同学,更多的应该是细讲,慢讲,让他们体会数1学学习的乐趣的同时,加大书本内容基本练习教学,让学生感受成功,从而转变学习数学的习惯。

  (四)具体措施及活动安排:

  针对高一一年出现的数学学习及教学现象,本学期打算从以下几个方面改进采取有针对性的措施:1、深入研究,把握教材;

  认真学习课程标准,钻研教材,把握各单元、各节的各个知识点的教学要求和重难点,以及各个知识点之间的联系、在整个高中数学中的地位、高考考试要求的层次,熟悉教材的特点和编者的意图,对存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

  2、规范化教学:

  严格规范数学教学常规工作。每位教师要认真制定自己的课堂教学设计,把握课堂40分钟。学生作业要求规范(包括学生书写作业的规范和教师批阅作业的规范),注重分层作业实施,加大数学学习督查力度。强化导师制工作。

  3、加强学情分析,提高效率。

  各位教师根据不同班级学生特点与学习数学的基础差异,在设计时有针对性教学,提高学生学习的积极性,从而提高课堂效率,提高数学成绩。

  4、注意从实例出发,抓住本质,讲清解题的关键和基本方法,注意学生课堂反应,关注每一位学生的数学学习,尤其是数学学习学困生。

  (五)教学工作安排,详见教学计划进度表

  二、教研工作

  (一)工作目标

  1、通过教研活动,不断提高每一位教师的个人专业能力与素养,提高课堂驾驭能力与学科研究能力。

  2、加强集体备课,统一教学进度,统一不同层次的教学内容,统一不同层次的作业,激发组内同事的团

  结协作热情,提高整个小组的凝聚力和创造力。

  (二)工作安排计划

  (1)按时完成学校(教务处,教研组)相关工作。

  (2)统一备课:每周集体备课一次(周一下午),每次有中心发言人,分析指出上周教学中存在的问题,组织进行教学研讨,改进完善。对本周的教学内容进行分析,把握重点难点和本节的高考知识点。制定本周教学计划。统一课堂实例,统一分层作业。每次备课要有记录。

  记录安排谈家文、李慎、姚加启、黄传建、叶明刚、董振伟、卢新全、唐华兵

  (3)公开课安排:从第二周开始,每周确定一位老师上教学公开课。个人提前一周备好个人教案,并在集体备课时所有老师参与讨论修改,然后先要给组内同事进行20分钟的说课,集体研讨后再上。并邀请相关领导前来听课指导,公开课结束后集体评课,并将教案保存起来,以备以后研究。

  具体人员安排:谈家文,董振伟,叶明刚,黄传建,卢新全,姚家启,唐华兵,李慎

  (4)听课安排:听课分两种:校内听课,每位教师听同科老师上课不得少于20次,不同年级老师5次以上,并在教研会议上加以讨论;校外听课,对合肥市举行的教研活动积极参与,每次听课后召开教研会,对其评讲学习。

  (5)周练安排:每周指定一位老师制定周末作业,作业要体现分层,主要由8道选择题和四道填空题三道解答题组成。分为基础题和拔高题,周日晚自习前收回。进行集中批阅。存在的问题及时订正。

  2(7)培优补差工作安排:开学后根据入学考试成绩和上学期期末成绩,分文理确定30~40名培优学生,成立培优班。专人专室进行拔高训练。成立补差班,主动与学生交流,利用课后时间进行补差。根据班级情况,借鉴上学期培优班的经验,将补缺补差做到实处,这个学期建立补缺班,专门针对班级中底子稍弱且学习刻苦的同学,目前先建立两个班实验(文理各一个)。等到时机成熟,将针对不同问题的学生,进行针对性的补差。

  培优补差工作安排:

  培优工作:叶明刚董振伟黄传建唐华兵

  补差工作:姚加启卢新全李慎谈家文

  (8)导师制工作:高二才进行文理分科,开学考试后,以最快速度了解班级学生基本情况,根据上学期期末考试和入学考试的成绩,对成绩起伏较大的学生加倍关注,主动找这些学生与其交流,争取一个月内把班级每一个学生都找谈话一次,关心爱护并给予适当指导,要注意每个细节,。结合班级导师制工作,做好导师制工作下学生的各项工作的开展,每月至少谈一次话。并且详细记录。

  总之,我们愿与学校同行,在探索中前进,在反思中成熟,争取教育教学质量更上一个新的台阶。因为我们坚信我们终可以使学生学会,用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。用自己的爱心去对待每一个学生。

高二数学教学计划2

  【课程分析】:

  在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。教学重点是理解辗转相除法与更相减损术求最大公约数的方法。难点是把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

  【学情分析】:

  在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

  【设计思路】

  采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  【学习目标】

  (1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。

  (2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

  (3)领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

  【教学流程】

  一、创设情景,揭示课题

  1、教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

  2、接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的`内容。

  二、研探新知,发现规律

  1、辗转相除法

  例1求两个正数8251和6105的最大公约数。

  解:8251=6105×1+2146

  显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。

  6105=2146×2+1813 2146=1813×1+333

  1813=333×5+148 333=148×2+37

  148=37×4+0

  则37为8251与6105的"最大公约数。

  以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:

  第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;

  第二步:若r0=0,则n为m,n的最大公约数;若r0≠0,则用除数n除以余数r0得到一个商q1和一个余数r1;

  第三步:若r1=0,则r1为m,n的最大公约数;若r1≠0,则用除数r0除以余数r1得到一个商q2和一个余数r2;

  依次计算直至rn=0,此时所得到的rn-1即为所求的最大公约数。

  (1)辗转相除法的程序框图及程序

  程序框图:(略)

  程序:(当循环结构)直到型结构见书37面。

  INPUT “m=”;m

  INPUT “n=”;n

  IF m

  m=n

  n=x

  END IF

  r=m MOD n

  WHILE r<>0

  r=m MOD n

  m=n

  n=r

  WEND

  PRINT m

  END

  练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)

  2、更相减损术

  我国早期也有解决求最大公约数问题的算法,就是更相减损术。

  更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损,求其等也,以等数约之。

  翻译出来为:

  第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

  例2用更相减损术求98与63的最大公约数、

  解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=35

  63-35=28

  35-28=7

  28-7=21

  21-7=14

  14-7=7

  所以,98与63的最大公约数是7。

  练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)

  三、对比归纳,得出结论

  3、比较辗转相除法与更相减损术的区别

  (1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

高二数学教学计划3

  一、教学内容

  本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容。

  二、教学指导

  1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。

  2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的数学实践能力,这也是新课程标准的核心要求。

  3、教学要注重基本知识、基本技能、基本方法的.掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好“度”,切忌将选修内容纳入必修课程。

  4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。

  5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。

  6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。

  7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。

  8、试卷分值、试卷结构、考试时间待定,难度系数为0.60—0.65。

  9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。

  三.教研活动

  1.充分利用有利条件——课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。

  2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学此文转自任务。

  3.本学期每人上一堂公开课,计划上交教学处。

  4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。

  5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。

  6.争取做一个课题,具体内容与安排由科组合议。

高二数学教学计划4

  一、现状分析:

  1、 本年级学生由25个班分成10个文科班和15个理科班,学生构成进行了重新组合。

  2、 经过上期全组教师的共同努力,全年级的数学平均成绩由高一上期的与泸高相比相差7个百分点降为只差3个百分点。

  3、 泸州市的其它学校在暑假都进行了补课,而我校没有,教学进度整整相差一个月。

  4、 上学期年级组在教学时间的安排上对数、理、化、英进行了倾斜,练习和复习时间相对较多。

  二、教学目标:

  1、 顺利完成高二上期的教学内容,并完成下册《排列与组合》的教学。争取有二到三周的时间进行复习。

  2、 高二联考平均成绩理科与市内国示高中相比相差不得超过3分,文科要高于5分,入围人数要达到年级的平均水平。

  3、 数学竞赛要完成高一和高二上期所学内容的教学,争取能完成平面几何的教学。

  三、教学措施。

  1、认真落实,搞好集体备课。每周至少进行一次集体备课。将全组教师分成4个组(第一组:王兵,杨述刚,冷昌才;第二组:涂海,冯玉平,任利红;第三组:周钰,陈容芳,马骏峰;第四组:彭正楷,唐小琳,石庆洪)各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料《聚焦课堂》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  附:高二数学学习方法:文科生如何学数学

  杜绝负面的自我暗示

  首先对数学学习不要抱有放弃的想法。

  有些同学认为数学差一点没关系,只要在其他三门代科上多用功就可以把总分补回来,这种想法是非常错误的。教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。高考也是如此,只有各科全面发展才能取得好成绩。

  其次是要杜绝负面的自我暗示。高三一年会有许许多多的考试,不可能每一次都取得自己理想的成绩。在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示,相反地,要对自己始终充满信心,最终成功会来到你的身边。

  抄笔记别丢了“西瓜”

  高考数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。一般教高三的都是有着丰富经验的'老师,他们上课时的内容可谓是精华,认真听讲45分钟要比自己在家复习两个小时还要有效。

  听课时可以适当地做些笔记,但前提是不影响听课的效果。有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。

  题目最好做两遍

  要想学好数学,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性。在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1―2本左右,不要太多。

  在高考前的冲刺阶段要保证1―2天做一套试卷来保持状态。最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。

  在这里有两个小建议:一是在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习;二是题目最好做两遍以上,可以加深印象。

  应考时要舍得放弃

  对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择。

高二数学教学计划5

  一、教材依据

  本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

  七、教学过程

  问 题

  师生活动

  设计意图

  1、在直线坐标系内确定一条直线,应知道哪些条件?

  学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。

  使学生在已有知识和经验的基础上,探索新知。

  2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。

  学生根据斜率公式,可以得到,当 时, ,即

  (1)

  教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

  培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。

  3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?

  学生验证,教师引导。

  使学生了解方程为直线方程必须满两个条件。

  (2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?

  学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.

  使学生了解方程为直线方程必须满两个条件。

  4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

  学生分组互相讨论,然后说明理由。

  使学生理解直线的点斜式方程的适用范围。

  5、(1) 轴所在直线的方程是什么? 轴所在直线的`方程是什么?

  (2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  (3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  教师学生引导通过画图分析,求得问题的解决。

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

  6、例2、例4的教学。

  教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

  学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

  7、例3的教学。

  求经过点 ,斜率为 的直线 的方程。

  学生独立求出直线 的方程:

  (2)

  在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

  8、观察方程 ,它的形式具有什么特点?

  学生讨论,教师及时给予评价。

  深入理解和掌握斜截式方程的特点?

  9、直线 在 轴上的截距是什么?

  学生思考回答,教师评价。

  使学生理解“截距”与“距离”两个概念的区别。

  10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?

  学生思考、讨论,教师评价、归纳概括。

  体会直线的斜截式方程与一次函数的关系.

  11、课堂练习第65页练习第1,2,3题。

  学生独立完成,教师检查反馈。

  巩固本节课所学过的知识。

  12、小结

  教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

  13、布置作业:第77页第5题

  学生课后独立完成。

  巩固深化

  八、教学反思

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。

  本节课的基本题形:

  1、已知直线上一点及直线的倾斜角,求直线的方程并作图;

  2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。

高二数学教学计划6

  一、指导思想

  1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。

  2、发展数学应用意识,学会将数学知识运用于生活。

  3、树立学生能学好数学的信心。

  二、基本情况分析

  本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的`差异程度加大,为教学的因材施教增加了难度。

  我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。

  学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。

  三、教学目标

  理解所学知识的概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。

  着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。

  四、方法措施

  1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。

  2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯

  五、课程安排及教学进度

  余弦

  周活动安排

  周次

  时间

  活动安排

  备注

  1

  2.28-3.6

  两角和与差的正弦公式

  2

  3.7-3.13

  两角和与差的余弦公式

  3

  3.14-3.20

  正弦型函数

  4

  3.21-3.27

  正弦定理,

  5

  3.28-4.3

  余弦定理

  6

  4.4-4.10

  三角公式及应用复习

  7

  4.11-4.17

  椭圆

  8

  4.18-4.24

  双曲线

  9

  4.25-5.1

  期中考试

  10

  5.2-5.8

  抛物线

  11

  5.9-5.15

  二次曲线及应用复习

  12

  5.16-5.22

  概率与统计

  13

  5.23-5.29

  排列与组合

  14

  5.30-6.5

  二项式定理

  15

  6.6-6.12

  离散型随机变量及其分布

  16

  6.13-6.19

  二项分布,正态分布

  17

  6.20-6.26

  本章复习

  18

  6.27-7.3

  期末考试

  19

  7.4-7.10

  总结

高二数学教学计划7

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)经过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)经过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)经过解析几何的概念教学,培养学生的'正向思维与逆向思维的能力。

  (6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)经过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划8

  (1)知识目标:

  1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标:

  1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  I.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本P77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  II.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  III.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  (五)小结反思(拓展引申)

  1.课堂小结:

  (1)圆心为C(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

  (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

  (4) 求解应用问题的一般方法

  2.分层作业:(A)巩固型作业:课本P81-82:(习题7.6)1.2.4

  (B)思维拓展型作业:

  试推导过圆 上一点 的切线方程.

  3.激发新疑:

  问题七:1.把圆的.标准方程展开后是什么形式?

  2.方程: 的曲线是什么图形?

  教学设计说明

  圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力。

高二数学教学计划9

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的.概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划10

  一、指导思想:

  在学校教学工作意见的指导下,在部门工作框架下,认真落实学校准备工作要求,严格执行学校教育教学体系和要求,加强数学教学研究,提高教师教学、教学研究水平,明确任务,团结合作,成功完成教学研究任务。具体目标如下。

  1.获得必要的数学基础知识和技能,了解基本数学概念和数学结论的本质,了解概念和结论的背景和应用,体验数学思想和方法,以及它们在后续学习中的作用。通过不同形式的独立学习和探索活动,体验数学发现和创造的过程。

  2.提高空间想象、抽象概括、推理论证、操作求解、数据处理等基本能力。

  3.提高提出、分析和解决问题(包括简单的实际问题)的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,努力思考和判断现实世界中包含的一些数学模式。

  5.提高学习数学的兴趣,树立学好数学的信心,形成持之以恒的学习精神和科学态度。

  6.具有一定的数学视野,逐步了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,倡导数学的理性精神,体验数学的'审美意义,进一步树立辩证唯物主义和历史唯物主义世界观。

  二.学生基本情况

  高二有926名学生,大部分学生学习积极性强,部分学生学习数学氛围不强,基础差。学生学习知识内容复习不及时,对二年级数学学习影响很大,一年级数学成绩充分反映顶尖学生,成绩差,有一群学生思维相当灵活,但学习不够努力,学习成绩一般,但潜力大,未来指导,进一步培养学习兴趣,从而激发全体学生的学习热情,提高学生的数学成绩。

  三、教法分析:

  1.选择与内容密切相关、典型、丰富、熟悉的材料,用生动的语言言,反映数学概念和结论、数学思想和方法,以及数学应用的学习情况,使学生对数学有亲密感,引起学生“看个究竟”为了达到培养兴趣的目的,冲动。

  2.通过“观察”,“思考”,“探究”等栏目,引发学生思考和探索活动,有效改进学生的学习方式。

  3.强调类比、推广、特殊化、归化等数学思维方法,尽可能养成逻辑思维习惯。

  四、教学措施:

  1.认真落实,做好集体备课工作。每周至少集体备课一次。每组教师根据自己的任务提前一周备课,并做好本周的单页练习。在教研会上,一位老师作为主要发言人,分析本周的教材内容,然后研究讨论重点、难点和教学方法。

  2、有详细的计划,以确保练习的质量。在教学中,根据教学进度完成相应的练习。教师应提前向学生指出不做的问题,以免影响学生的时间,并每周使用内容“滚动式”编两份练习试卷,老师做完后要收齐批改,安排时间对存在的普遍问题进行评价。

  3.注重第二课,稳定数学优生,培养数学能力和兴趣。竞赛班的教学进度要加快,教学难度要降低。各班要培养本班优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  4.加强辅导工作。对于数学学习困难的学生,教师的下班辅导非常重要。在教师教学中,要尽快掌握班上学生的数学学习情况,开展有针对性的辅导工作,不仅要注意照顾班上的优生层,还要忽视班上的困难学生。

  五、具体措施

  1.不要孤立地记住和理解每个知识点,而是把它放在相应的系统结构中,在比较和识别的过程中寻求内部联系,达到理解水平,注意知识块的复习,建立知识网络.注重基础知识和解决问题的基本技能,注重基本概念、基本定理和公式的比较,灵活运用;努力有意识地分析和理解;特别是数学语言的表达,推力论证要思路清晰,整体完整.

  2.学会分析,首先是阅读理解,重点是解决问题前的信息捕捉和思路探索;二是回顾问题,总结经验教训,重视常见问题类型和通用方法.

  3.以“错”纠正错误,检查空白,反思错误,严格培训,规范解决问题,养成:理解,写清楚,计算准确的习惯,注意思维的清晰度、思维的严谨性、叙述的组织、结果的准确性,注意写作过程,从一个例子中得出推论,及时总结比,加强数学思想和数学方法的应用.

  4.协调好讲、练、评、辅的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效率;精心设计教学,不增加学生负担,避免“题海战”,精心准备,评论到为,做到评论试卷或例题:讲清楚那些知识点,如何审题,如何打开解题思路,使用这些方法和技能,关键步骤在哪里,哪些是典型的错误,知识和逻辑,方法、心理和战略错误,调整复习策略,使复习更加关键和有针对性,加快教学节奏,提高教学效率.

  5.精心规划合理安排,注重提高知识能力,提高综合解决问题的能力,加强解决问题的教学,使学生提高解决问题的能力.

  6.多从“贴近教材,贴近学生,贴近现实”从角度看,选择典型的数学联系生活、生产、环境和技术问题,对学生进行有计划、有针对性的培训,给学生更多的机会锻炼各种能力,从而提高学生的综合数学能力.学生的能力不脱离基础知识,基础扎实的学生不一定能力强.教学中,在数学问题的解决中不断运用基础知识,努力提高学生的综合学科能力.

  六、教学进度表:略

高二数学教学计划11

  教材分析:

  本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:

  1.注重基础:

  “大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。

  2.降低知识起点

  多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。

  3.增加较大的使用弹性

  考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的`弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。

  4.注重数学应用意识的培养

  每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。

  5.注重培养学生使用计算机工具的能力

  在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术。

  教材内容:

  本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。

  每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。

  学生情况分析及教学对策:

  05财会(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的学习中坚力量主要在一小部分的女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。

  教学进度表

  周次

  起讫月日

  教学内容

  教时

  执行情况

  1

  8月28日至9月3日

  学期准备工作

  2

  9月4日至9月10日

  8.1(1);8.2(2);8.3(2)

  5

  3

  9月11日至9月17日

  8.4(2);8.5(2);8.6(1)

  5

  4

  9月18日至9月24日

  8.7(1);8.8(1);习题(1);8.9(2)

  5

  5

  9月25日至10月1日

  8.10(1);8.11(1);8.12(1);习题(2)

  5

  6

  10月2日至10月8日

  国庆放假

  7

  10月9日至10月15日

  8.13(3);8.14.1(2)

  5

  8

  10月16日至10月22日

  8.14.2(1);8.15(3);习题(1)

  5

  9

  10月23日至10月29日

  习题(1);第一章复习(2);9.1(2)

  5

  10

  10月30日至11月5日

  9.2(1);9.3(2);9.4(1);9.5(1)

  5

  11

  11月6日至11月12日

  期中考复习

  5

  12

  11月13日至11月19日

  期中考试

  13

  11月20日至11月26日

  9.6(1);复习(2);9.7(1);9.8(1)

  5

  14

  11月27日至12月3日

  9.9(1);9.10(2);9.11(2)

  5

  15

  12月4日至12月10日

  习题(2);9.12(1);9.13(2)

  5

  16

  12月11日至12月17日

  9.14(1);9.15(1);9.16(2);9.17(1)

  5

  17

  12月18日至12月24日

  9.17(1);习题(2);9.18(1)

  5

  18

  12月25日至12月31日

  9.19(2);9.20(1);9.21(2)

  5

  19

  1月1日至1月7日

  9.22(1);9.23(3);9.24(1)

  5

  20

  1月8日至1月14日

  9.25(3);习题(2)

  5

  21

  1月15日至1月21日

  期末复习

  5

  22

  1月22日至1月28日

  期末考试

  23

  1月29日至2月4日

  期末结束工作

  24

  2月5日至2月11日

  期末结束工作

高二数学教学计划12

  一、教学内容分析

  本节课教学内容是《普通高中课程标准实验教科书·数学必修3》(苏教版)中 “3.4互斥事件”第1课时。教材既介绍计算概率的两种简单模型——古典概型、几何概型,开始学习求解复杂事件的概率。对复杂事件的概率的计算,就需要分析复杂事件与基本事件间的关系,以及复杂事件发生的概率与基本事件发生的概率间的关系,为此,教材引入互斥事件、对立事件概念,从中渗透化繁为简的指导思想。本节内容在高考考试说明要求为A级。

  二、学生学习情况分析

  针对本校提倡的“先学——后批——自纠——点评——反思”教学流程,学生在充分预习的情况下对教学案中的“自学质疑”板块已有较好的把握,绝大多数学生能够完成其中问题,但仍有部分学生对互斥事件、对立事件、基本事件三者概念产生混淆,对古典概型、几何概型的应用不太熟练,对问题的情境的理解不够到位,分类讨论、正难则反的数学思想还没得到深度认同。

  三、设计思想

  本节课是在新课程标准实施背景下,结合市教育局倡导的“三案六环节”教学模式,结合自身“知识问题化,问题层次化”的设计思路展开的,与以往稍有不同的是突出了学生作为课堂的主体地位,教师主要发挥引导、评价及完善功能。整个过程为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解决疑难问题的尝试活动,在知识巩固和灵活运用的过程中,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

  四、设计思路

  (1)从时间分配上来说,首先由学生回答课件提出的一系列问题占用10分钟,接着有15分钟的精彩展示,由学生根据课前板书的内容展开讲解交流,然后借助导学案的巩固题、变题进行讨论占用15分钟,最后有5分钟的课堂小结。

  (2)从教学安排上来说,上课前,学案学生提前完成,教师及时审阅初步了解学情状况;课堂上,学生精彩展示细致书写并配以适当讲解达到自己说的出,大家听得懂,接着,提供变题让全体学生积极解答达到及时巩固升华的目的,接着学生完成本课时的巩固案,最后,让学生作出课堂反思总结。

  (3)从内容安排上来说,分三大块:第一块,问题情景(课件);第二块,交流展示(预习案);第三块,巩固提高(巩固案、变题)。

  五、教学目标

  1. 了解互斥事件及对立事件的概念;

  2. 能判断两个事件是否是互斥事件还是对立事件;

  3. 了解两个互斥事件概率的计算公式;

  4. 注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维;

  5. 通过学生“自学、互学、群学”培养学生自主探究和合作交流的良好品质,激发学生学习数学的兴趣。

  六、教学重点和难点

  教学重点:互斥事件和对立事件概率的应用;

  教学难点:互斥事件和对立事件概念的理解;

  教学准备:学案、巩固案、多媒体课件、遥控激光笔。

  七、教学过程设计

  (一) 课前:学生完成预学案,教师及时审阅

  [设计意图] 数学教学立足于问题处理,一方面,先给学生足够的时间充分思考不仅可以增加课堂教学的容量,而且能够提高教学内容的针对性,从而达到课堂效益的最大化;另一方面,教师能够通过教学案批阅反馈的信息,很好地了解学生对知识的掌握情况,抓住学生的难点和疑点,从而提高课堂讲解的实效性。

  [师生活动] 教师:由课代表转发教学案(教学案另补附上)

  学生:独立完成预学案部分,并及时上交(自学)

  教师:及时审阅,做好反馈后返还学生

  学生:领取教学案,相互讨论做好订正(互学、群学)

  [学情预设] 学生通过“自学、互学、群学”后,主要会有如下疑难问题:

  (1)交流展示中第1题,学生对互斥事件和对立事件的概念的把握不够准确.

  (2)交流展示中第2题,学生在正面分析问题时分类的情况较多,尝试可以通过逆向思维解决,从而避免分类,渗透“正难则反”的`数学思想.

  (3)交流展示中第3题,学生在将复杂事件通过基本事件表示时有一定的难度,还有解答时的规范性有待加强.

  (二) 课堂:教师设计问题串,学生互动交流

  [设计意图] “知识问题化,问题层次化”一组好的问题将学生带入到一种情境,能够激发学生的求知欲,使学生学习变被动为主动,从而在课堂上迸发出智慧的火花.

  [师生活动] 教师:问题1.设置问题情景,一次考试中,一位学生能否既为良又为优? 学生:·······

  教师:问题2.那么这位同学体育成绩为“优良”(优或良)的概率是多少? 学生:······

  教师:问题3.尝试抽象出互斥事件的概念及概率的求解公式?

  学生:······

  教师:问题4.在两个互斥事件中,如果必有一个发生,则两者的关系如

  何?

  学生:······

  教师:引导学生找出互斥事件、对立事件的关系并加以总结.

  (三)课堂:学生精彩展示,教师实时点评

  [设计意图] 兴趣是最好的老师,激发学生对数学学习的热情和学生的内驱力是教师的艺术所在。学生将自己的学习成果展示出来与大家分享,在交流过程中潜移默化的增强了学生的自信心,达到让学生不仅会写而且会说,学会分析问题解决问题。教师把自身的角色转换到听众的位置并适时加以点拨引导,形成一种师生平等、共同进步的和谐局面。

  [师生活动] 教师:根据学生板演内容,学生有序讲解。

  学生:·······

  教师:问题1:口述互斥事件、对立事件、基本事件的概念,并说明三

  者的关系?

  学生:······

  教师:问题2:此问题可以从反面这个角度考虑吗,有怎样的效果呢?

  学生:······

  教师:问题3:比较发现设置的两个问题,给同学哪些启示?

  学生:······

  教师:问题4:变题介绍将“4只红球,4只白球中随机取出3只球”,

  给出的下列事件是对立事件的有哪些?

  学生:······

  (四)课堂:教师善于变题,学生随机应变

  [设计意图] 教学内容的深度应该逐层推进,注意将学生思维提高到一定的高度,从而达到智慧火花的碰撞。教师能够善于捕捉学生的闪光点,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”的主动学习。

  [师生活动] 教师:问题1:迅速完成巩固案的强化练习,总结课堂所学知识点?

  学生:······

  教师:问题2:解答概率习题的规范?

  学生:······

  [学情预设] 既完成预学案上习题之后,教师发放巩固案供学生解答,主要问题预测如下:

  (1)矫正反馈中练习题对互斥事件和对立事件知识点的强化.

  (2)学生对概率解答题的解答规范有所欠缺.

  (五)课堂:学生自我总结,教师完善补充

  [设计意图] 经过习题演练过后,必须形成一定的思想方法,这样才能将数学学活,

  知识的升华过程所能达到的高度因人而异,但数学素养的提高可以通过交流互相弥补。通过学生的总结,不仅培养学生的归纳总结的能力和语言表达能力,而且在师生交流过程中各取所长,达到“青出于蓝胜于蓝”的境界。

  [师生活动] 教师:问题1:变题中,分类的情况有哪些?

  学生:, ······

  教师:.

  教师:问题2:出现“至多”、“至少”字眼时,常常需要逆向思维?

  学生:, ······

  [学情预设] 主要难点如下:

  (1)学生对问题分类过多时,需要细心思考,要求“不重复,不遗漏”的原则;

  (2)学生解决问题时习惯正面解决,对逆向思维的把握不准。

  (六)课后:学生完成巩固案,教师及时批阅反馈

  [设计意图]数学知识的内化是需要一个过程,是经过学生自身的磨合才能得到认同的,经过一些有针对性的练习能够及时巩固,达到预期的效果.

  [作业布置] 1.巩固案必做题

高二数学教学计划13

  一、指导思想:

  在学校教学工作意见指导下,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体任务如下:

  1.使学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高学生的空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高学生提出、分析和解决数学问题(包括简单的实际问题)的`能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展学生数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学生学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教法分析:

  1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论、数学的思想和方法、以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2.通过“观察”、“思考”、“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比、推广、特殊化、化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  三、教学措施:

  1.全组老师精诚团结、互相关心、互相支持,力争使我们高二数学组成为一个充满活力的优秀集体。互相听课、取长补短、完善自我,不拘形式、时间、地点的加强交流。在日常工作当中,既保持和优化个人特色、又实现资源共享,同类班级的相关工作做到基本统一。

  2.认真落实、搞好集体备课。每周周四上午三、四节进行集体备课,认真分析教材内容,研究讨论其中的重点、难点、教学方法等。

  3.详细计划、保证练习质量。教学中充分利用好配备资料,要求学生按教学进度完成相应的习题,每周以内容“滚动式”出好周练试卷,老师要收齐批改,存在的普遍性问题要安排时间讲评,成绩周四前自行输入年级电脑。

  4.抓好第二课堂,稳定数学优生,培养数学能力兴趣。各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  5.加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学教学计划14

  一. 指导思想

  《课程标准》明确指出:“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体、美等全面发展的社会主义事业的建设者和接班人”的指导思想,阐述了新课程改革的教学理念和要点。在高中阶段的教学过程中,要努力使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能,具备一定的数学素养。

  二.课程总体目标

  根据本学期的教学内容,教学任务和要求,本学期的课程目标可概括如下:

  1.夯实高中数学课程必修⑤、必修③、选修2-1中的基础知识,突出相应的基本方法与基本技能。

  2.注重培养学生的逻辑思维能力、运算能力、空间想象能力,提高学生综合运用所学的知识,分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力,并且不断地渗透函数与方程、数形结合、分类讨论、化归与转化等重要的数学思想方法。

  3.根据数学的学科特点,加强自主性学习的教育,培养学生学习数学的兴趣,增强学生学好数学、用好数学的'信心;培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、自主探究、创新的精神,让学生亲自体会学有所得,学有所用的快乐。

  4.学会通过收集信息并进行加工、整合,处理数据、制作图像、分析原因、推导结论来解决实际问题的思维能力和操作方法。

  5.使学生具备一定的数学素养,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性思维,体会数学的美学意义与人文科学,进一步树立辩证唯物主义和历史唯物主义世界观。

  三.学情分析及相关措施:

  学生步入高二年级就意味着新的学习的开始,无论是从学习的内容、学习的方法,还是教学模式的转变,都需要一个适应的过程。高中阶段的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  1.结合学生的实际情况,做好初、高中学习方法的衔接、过渡和转化工作。

  2.注重夯实基础知识,突出重点、分散难点.所教的基础知识依据《课程标准》的要求,着眼于夯实基础知识,注重能力的稳步提升,充分体现基础与能力并重,循序渐进的教学原则。

  3.培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  4.让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。

  5.抓好优生强化与后进生的转化辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  6.注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高二数学教学计划15

  一、教学目标

  (一)知识与技能

  1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.

  2.理解并掌握几何概型的概念.

  3.掌握几何概型的概率公式,会进行简单的几何概率计算.

  (二)过程与方法

  1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.

  2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.

  (三)情感、态度、价值观

  1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.

  2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.

  二、教学重点与难点

  教学重点:了解几何概型的基本特点及进行简单的几何概率计算.

  教学难点:如何在实际背景中找出几何区域及如何确定该区域的`“测度”.

  三、教学方法与教学手段

  教学方法:“自主、合作、探究”教学法

  教学手段: 电子白板、实物投影、多媒体课件辅助

  四、教学过程

  五、板书:几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点。

  这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比。

  我们把满足这样条件的概率模型称几何概型.

  板书:几何概型的概率计算公式:

【高二数学教学计划】相关文章:

高二数学教学计划06-22

数学高二教学计划01-24

(热门)高二数学教学计划07-23

高二数学教学计划(精选15篇)12-24

高二数学教学计划15篇11-08

高二数学教学计划(15篇)11-08

高二数学的教学计划15篇01-02

高二数学教学计划精选15篇12-20

高二数学教学计划汇编15篇12-23

高二数学教学计划通用15篇12-17