平行四边形的面积教学设计
在教学工作者开展教学活动前,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?以下是小编整理的平行四边形的面积教学设计,希望能够帮助到大家。
平行四边形的面积教学设计1
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
探索并掌握平行四边形的面积计算方法。
理解平行四边形面积计算公式的推导过程。
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的'探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
平行四边形的面积教学设计2
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
板书:长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的'底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
平行四边形的面积教学设计3
教材分析:
《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。
教学目标:
1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。
3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。
教学重难点:
教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。
教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
3块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
一、创境导入,激发兴趣
由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。
二、多元学习,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的`面积和它的长和宽有关,那么我们猜想一下,平行四边形的.面积可能与它的什么有关?
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并在小组内交流。
3、汇报展示
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:
长方形的面积=长×宽
平行四边形的面积=底×高
5、利用课件回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah
7、记忆公式
如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?
三、巩固练习,深化运用,
课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。
四、课堂总结,深化新知
最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
平行四边形的面积教学设计4
教学目标:
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
教学难点:
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
教学过程:
一、情景引入
1、联系实际选择建房用地。
(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?
(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……
二、探究新知
1、面积计算公式的推导:
引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:S=a×h,S=a·h或者S=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
教学反思:
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的.同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
平行四边形的面积教学设计5
设计说明
在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:
1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。
2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。
3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的`思维能力。
课前准备
教师准备 PPT课件 平行四边形纸片 方格纸剪刀
学生准备 硬纸板做的平行四边形 三角尺 剪刀
教学过程
⊙创设情境,提出问题
1.出示公园里的一块长方形空地的示意图:长10米,宽6米。
提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?
生:10×6=60(平方米)
师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?
生:数方格。
2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。
提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?
3.学生回答后引入新课:这节课我们就来学平行四边形的面积。
设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。
⊙猜想尝试,获取新知
1.出示教材53页问题一。
师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?
学生讨论,猜想求这块空地面积的方法。
预设
生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。
生2:把平行四边形的相邻的两边相乘。
过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?
2.借助方格纸数一数,比一比。
师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?
(1)请大家仔细观察方格纸上的两个图形,数一数。
(2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。
(3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?
引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。
提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?
设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。
3.推导平行四边形的面积计算公式。
师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。
(1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?
释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。
(2)师生共同总结。
①通过剪一剪、拼一拼,把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。
(3)推导平行四边形的面积计算公式。
长方形的面积=长×宽,得出:平行四边形的面积=底×高。
字母公式:S=ah。
(4)梳理平行四边形面积计算公式的推导方法。
师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
(学生汇报)
师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。
设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。
平行四边形的面积教学设计6
教学目标:
1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2、能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。
教学过程:
一、激趣引入
1、创设情景
师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)
师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)
师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)
师:回忆一下,以前我们是用什么方法得出长方形的面积的。
2、稳固复习
师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。
生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。
师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?
生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。
师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)
师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)
师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)
二、新知探究
1、数方格
师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?
生:一格代表1m2,不到一格按半个计算。
师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)
2、推导公式
师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)
生:相邻两边相乘,或者底乘高。
师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?
生:面积变小了,但四条边都没有发生变化。
师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)
师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?
生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?
生:长方形。
师:请同学们根据前面的'经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。
(1)面积还相等吗?
(2)转化后的长方形与原来的平行四边形有什么关系?
(3)长方形的长、宽与平行四边形的底、高有什么关系?
(4)怎么计算平行四边形的面积?
生:沿着一条高切下来,不到另一边就变成了长方形。
师:试着说说上面的四个问题。
生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
(生边说师边演示,并进行适当的引导)
师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)
师:还有其他的方法吗?
生:演示方法。(课件演示两种方法)
师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)
师:平行四边形的面积大小是由()和()决定的。共同决定的。
3、回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?
三、练习巩固
(一)基础练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)
3判断:
①平行四边形的底是7米,高是4米,面积是28米。()
②a=5分米,h=2米,s=100平方分米。()
③平行四边形的底越长,面积就越大。()
④平行四边形的高越长,面积就越大。()
4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。
a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小
5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。
(二)拓展提升
1、计算下面每个平行四边形的面积。
2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
四、总结提示
师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
板书设计平行四边形的面积
数方格
长方形的面积=长×宽
计算平行四边形的面积=底×高(底高对应)
s=ah
割补法(转化)
平行四边形的面积教学设计7
设计理念:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教学内容:
五年级上册第79-81页《平行四边形的面积》。
教学目标:
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。
学情分析:
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
教学重点:掌握平行四边形面积计算公式。
教学难点:平行四边形面积计算公式的推导过程。
教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
课前活动:
1、游戏:小小魔术师。教师出示不规则图形。
你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)
2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。
一、故事引入,激起质疑
1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。
一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?
阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的`话,你就得答应我,把欠长工的钱全部付清,怎么样?”
巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”
2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?
我们说的毛毯的大小指的是毛毯的什么?
以前我们学过哪些图形的面积,计算公式是什么?
3、这节课我们继续研究面积:平行四边形的面积。(板书课题)
以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。
设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。
二、动手操作,探究方法
(一)猜想
请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?
根据学生猜测,板书:可能出现(底×高或底×邻边)
根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条
(二)验证
1、到底哪种猜测正确呢?这就需要我们进行验证才知道。
2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?
3、静静地想,想好了吗?
(三)操作
1、探究活动步骤:
想好了,我们来看“深入探究活动”,分三步进行:
第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。
第二步:结合剪拼过程,思考这三个问题:大声读出来!
深入探究学习卡
①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?
②剪拼后的图形与原来的平行四边形相比,什么不变?”
③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系
第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。
明白了吗?比比看,哪个小组进行的又快又好!开始吧!
2、学生活动,教师参与。
请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。
3、汇报交流
(1)汇报剪拼过程。
一边演示,一边说说你的剪拼过程。
(2)指导规范叙述:
(板书:沿高剪平移)并追问:为什么要沿高剪?
(四)推导
1、汇报探究的三个问题。
结合剪拼过程,谁来说说你对这三个问题的思考?
①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。
2、汇报交流:面积不变,长---底,宽---高
追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?
请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。
师板书:平行四边形的面积=底×高
长方形的面积=长×宽
设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。
(五)结论
1、证实猜想,得出结论:平行四边形的面积=底×高是正确的
2、用字母表示:S=ah
三、解决问题,拓展延伸
1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?
2、你能算出芸芸家这块菜地的面积吗?
题上给了这么多信息,应该怎么选择呢?试试看,你一定行!
看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!
3、接下来大家要加油噢!看,向你挑战!怕不怕?
下面两个平行四边形,它们的面积一样大吗?
小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?
四、全课小结,完善新知:
现在大家看:哪块毛毯的面积大呢?
你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!
同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!
设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。
平行四边形的面积教学设计8
教学目标:
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。
(2)能运用平行四边形的面积公式解决相应的实际问题。
2、过程与方法:
使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感、态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
教学重点:
探索并掌握平行四边形面积的计算公式。
教学难点:
1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。
2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。
教具、学具准备:
1、多媒体课件、自制教具。
2、每个学生准备1把剪刀、一张平行四边形纸片。
教学流程:
一、创设情境,引入课题:
师:同学们,今天老师将要和大家一块儿探讨怎样的数学问题呢?首先老师给大家讲一个有趣的故事,大家想听这个故事吗?从前有一个老财主,他感觉自己的年龄越来越大了,身体也一天不如一天了,就决定把自己最好的两块儿地分给他最疼爱的`两个儿子。(课件)于是他把左边的这块儿地分给了第一个儿子,把右边的这块儿地分给了另一个儿子,可两个儿子分到地后都不满意。都说我那个老爹呀,真偏心把大的地分给了他,小的留给了我,老财主伤心的落泪了。谁能帮帮他呢?你们有什么好的办法吗?
生:
现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)
师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。
(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)
师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)
二、探究新知,导出公式:
1、猜想:
师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)
生:
师:我们发现长方形的长和平行四边形的底都是6米,长方形的宽和平行四边形的高也都是4米,而且它们的面积也相等。那么根据这些数据,我们能不能大胆的猜想一下平行四边形面积公式呢?
生:
师:你们是怎么推导出这个公式的呢?
师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)
2、验证:
(1)学生动手操作
(2)小组演示
(3)师课件演示
边演示边说:我们沿着平行四边形的一条高剪开,把它平移到右边,就拼成了一个长方形。我们发现了什么?
生:
板书:长方形的面积=长×宽
平行四边形的面积=底×高
师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?
(4)推导过程:(课件显示)
我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。
(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。
师:下边请同学们想一想如果用字母S表示面积,用字母a和h分别表示底和高,那么平行四边形的面积用字母怎么表示呢?
师板书:S=ah
3、面积公式的运用
课件出示例题:有一块平行四边形的麦田,底是85。8米,高是75米,这块麦田的面积是多少平方米?
三、巩固发展、实际运用:
1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)
2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)
四、课后延伸:
师拿出活动的长方形木架,沿对角一拉,变成一个平行四边形,请同学们想想这两个图形的面积还相等吗?它们的周长呢?请同学课后来讨论这个问题好吗?
五、反思与体会:
同学们,想一想,这节课你有哪些收获呢?(生)
师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!
平行四边形的面积教学设计9
内容简析:
平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。
2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
教学重点:
探索并掌握平行四边形的面积计算公式,渗透转化的思想。
教学设想:
学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。
教学过程:
一、复习引入
同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。
二、质疑猜想
师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。
质疑:平行四边形的面积怎样计算得出呢?
三、操作验证
用数方格的方法发现长方形和平行四边形的'面积相等。要求:不满一格的算半格。
2、验证面积=底×高
那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。
将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。
四、公式应用
学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。
有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?
S=ah=6×4=24(平方米)
五、全课总结
回想一下刚才我们的学习过程,你有什么收获?
平行四边形的面积教学设计10
教学目标
1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2.能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点平行四边形面积公式的推导过程。
教具1、多媒体计算机及课件;
2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。
教学过程
一、质疑引新:
1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
(出示平行四边形)这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]----------请同学们打开课本69页。
二、引导探求:
㈠、提出问题:
1、用数方格法求平行四边形的面积
⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。
⑵、数出方格图中平行四边形的面积。提问:
A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)
B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?
2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。
1平方厘米
3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的.长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!
电脑展示:(1)底、高、不变,面积不变。
(2)底、高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡、推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)
⑴、怎样剪拼才能将平行四边形转化成长方形?
⑵、转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?
⑷、小组上台汇报,指着图形说一次得出:
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
㈢、巩固公式:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
㈣、应用解决:
1、自学教材P70例题
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)
板书:32.6×8.4≈274(平方米)
答:它的面积约是274平方米.
(挑一学生的作业投影评讲)
平行四边形的面积教学设计11
[课程标准]
探索并掌握平行四边形的面积公式,并能解决简单的实际问题。
[学情分析]
学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。
[学习目标]
1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)
2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)
[评价任务]
评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。
评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。
[资源与建议]
1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。
2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。
3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。
4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。
[教学过程]
一、情境导入
出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?
师:大家各有各的看法,要比较它们的大小其实上是比较它们的.面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]
二、探究新知
1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。
(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。
(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)
(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)
生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。
生:我发现平行四边形的面积=底×高
师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。
[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]
2、合作交流探究新知
(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?
(2)、活动4:动手操作
以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)
(3)、活动5:学生汇报、交流。
师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,
(边演示边说剪拼过程,并贴剪拼图于黑板。)
师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?
你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?
哪个小组和他剪的不一样?
师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。
(4)、大屏幕演示不同的拼法。
(5)、活动6:小组讨论
师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)
小组讨论:
a、拼成的长方形的面积和原来平行四边形的面积—————。
b、拼成的长方形的长与原来平行四边形的底———————。
c、拼成的长方形的宽与原来平行四边形的高———————。
(6)学生汇报,教师总结板书:
师:我们把一个平行四边形转化成为一个我们学过的.长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
教师板书平行四边形的面积=底×高,
(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)
(8)介绍板书字母式。
师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。
观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?
[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]
三、实践应用
活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)
[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]
四、课堂检测
1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)
2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)
3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)
[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]
五、全课小结。
想一想你这节课学到了什么?
板书设计:平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
平行四边形的面积教学设计12
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:掌握平行四边的面积计算公式,并能正确运用。
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1. 平行四边形卡纸
要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:
2. 剪刀、三角尺、文具(铅笔、橡皮等)
3. 板贴
文字为:“平行四边形的面积”;
“长方形的面积=长×宽” “平行四边形的面积=底×高” “S=ah”;
“平行四边形的面积=相邻两边的乘积”
教学过程:
教学
环节
教师活动及教师语言
学生活动及学生语言
课件设计
复习导入
探索新知
巩固练习
小结
师:同学们,你们好!很高兴又能和大家一起探讨有趣的数学问题了!
那么今天聪聪将带我们去什么地方探讨怎样的数学问题呢?(课件:出示课本P79主题图)
师:仔细观察找一找图中有哪些学过的图形?
师:好,下面谁来说一说你找到了哪些学过的图形?
(教师随着学生的回答点击课件相应的画面)
师:你们知道这两个花坛中哪个面积大吗?
师:那么,谁的想法正确呢?我们一起来验证一下,好吗?
请大家看屏幕。(点击课件,边点击边说)
师:我们把这两个花坛画到纸上,用数方格的方法数数看。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。数一数,它们的面积各是多少?
师:下面请同学们打开书第80页,先独立思考并数一数,然后再和同桌互相交流。
师:好,谁来说一说你是怎么数的。
(师随生说点击课件)
师: 哦,你们数的结果是都是24平方米,说明……
也就是……
(一生举手,老师示意其发言)
师:这个问题提得很好,那平行四边形的面积公式是什么呢?这就是我们这节课要研究的内容。
(出示课题)
师:下面请同学们继续观察这两个图形,并完成课本第80页下方的表格。完成后想一想,除了面积相等外,它们还有什么关系呢?
师:谁来汇报一下你填的结果?
(师随学生汇报点击课件,补充表格)
师:通过这个表格,你们有什么发现呢?
师:大家同意吗?
那谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法?
(教师板贴:平行四边形的面积=相邻两边的乘积)
师:那这个猜想对不对呢?请大家想办法验证验证。
师:验证完了吗?
师:这个猜想对吗?
师:那谁来说一说你是怎样验证的?
师:哦,我听明白了。你是这样验证的。(点击课件,演示过程)你画了这样的两个平行四边形,它们的底边相等,与底边相邻的边也相等。那大家看它们的面积相等吗?
(点击课件)那这样呢,它们的`面积相等吗?
(点击课件)这样呢?
师:同学们,你们也是这样验证的吗?
师:看来,这个猜想(指黑板)不正确(在板贴公式的等号上画上斜杠)。那谁还有不同的猜想呢?
(教师板贴)
师:能说说你的理由吗?
(师在刚才贴的上面贴上长方形面积公式)
师:那这个猜想到底对不对呢(在平行四边形面积公式的等号上方画上问号)?请大家借助手中的平行四边形卡片、剪刀等学具想办法验证验证。
师:验证完了吗?
师:谁愿意把你的验证方法说给大家听听?
师:你为什么想到这样转化?
师:那你接着说说是怎样把平行四边形转化成长方形的。
师:哦,这位同学是这样(点击课件)沿着平行四边形的一条高剪开,把平行四边形转化成一个长方形。那谁能说说,平行四边形转化成长方形后,什么变了?什么没变?
师:非常正确!转化后,长方形的长与宽分别与平行四边形的底和高有什么关系?(师随生回答在黑板上的公式间标上对等关系。)
师:那现在你们知道平行四边形的面积怎样计算吗?
师:不错,这样我们就验证了平行四边形的面积公式=底×高(指黑板,擦去等号上的“?”号)
师:刚才这位同学是把平行四边形转化成长方形来验证的。不错,谁还有不同的方法?
(师随生说点击课件,依次呈现转化图中右侧的转化过程)
师:大家听明白了吗?
师:他们都把平行四边形沿着一条高剪开(点击课件),将平行四边形转化成一个长方形再进行验证的。
师:(小结)(点击课件)看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,大家都值得表扬。
师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?
(师出示板贴“S=ah”)
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。(出示例1)这道题是书上81页的例1,请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
师:不错,只要知道它的一组底和高就能求面积了。
师:那我们接着再来看一道题(点击课件)你能求出下面平行四边形的面积吗?这就是课本第82页的第2题。请大家在书上完成。
师:谁来说一说你是怎样求的?
(师随生说点击课件。)
师:大家同意吗?
师:下面我们继续看这两个平行四边形,(出示书P83(5)题目),仔细观察,想一想它们的面积相等吗?算一算它们的面积各是多少?这就是书上83页的第5题,请大家先独立思考,再两人一组讨论、交流自己的想法。
师:讨论完了吗?谁来说一说你是怎么解决这一问题的? (根据学生回答出示课件)
师:真不错!老师也是这么想的!可以说等底等高的平行四边形的面积相等,大家同意这种说法吗?
师:运用这节课我们所学的知识,我们还可以解决生活中的一些实际问题。请看屏幕。(点击课件)这是我们书上82页的第4题,请同学们一起完成吧。
师:谁来说一说你是怎样解决这一问题的?
师:你完成得很好,在解决问题时也注意了面积单位的变化!
师:下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?
师:看来,大家的收获真不少。只要大家勤动手,勤思考,就一定会学到更多的数学知识,也会变得越来越聪明!
好,今天这节课我们就上到这里,同学们再见!
生(齐):老师好!
学生观察、思考。
生1:斑马线上有长方形,地砖上有正方形。
生2:房顶上有三角形,左边的花坛是长方形的,右边的花坛是平行四边形的。
生3:车窗是梯形的。
生4:车轮是圆形的。
生1抢先站起来:长方形的面积大;
生2起来反驳:平行四边形的面积大;
生3:我认为长方形和平行四边形的面积一样大。
学生独立思考后,互相交流。
生1:长方形每行有6格,一共有4行,面积就是6×4=24(平方米);
生2:平行四边形整格的有20个,半格的有8个。不满一格的按半格计算,平行四边形的面积是
20+8÷2 = 24(平方米)。
生(齐):平行四边形的面积和长方形的面积同样大。
生(齐):两个花坛的面积同样大。
生2:我觉得长方形的面积不用这样数。我们已经学过了长方形的面积计算公式,只要数出长和宽,直接计算就可以了。
生3(站起来说):老师,我有一个问题,平行四边形的面积是不是也有计算公式呢,如果有就方便了。
学生填写表格,并思考。
生1:平行四边形的底和长方形的长都是6米;平行四边形的高和长方形的宽都是4米,长方形的面积和平行四边形的面积都是24平方米。
生2:平行四边形的底与长方形的长相等,高与长方形的宽相等,它们的面积也是相等的。
生(齐):同意!
生1:长方形的面积公式是长乘宽,也就是相邻两边的乘积,所以我认为平行四边形的面积公式也应该是相邻两边的乘积。
生集体验证。
生(齐):验证完了。
生(齐):不对。
生1(举起练习本):我画了这样两个平行四边形(如右图),它们的底边相等,与底边相邻的边也相等。如果面积公式是相邻两边相乘,面积应该是相等的,但是一眼就能看出它们的面积并不相等。所以这个猜想不对。
生(齐):不相等。
生(齐):不相等。
生(齐):不相等。
生(齐):是的。
生2:我认为平行四边形的面积公式应该等于它的底乘高。
生2:因为我们刚才填表格时,发现这个长方形的长和这个平行四边形的底相等,长方形的宽又和这个平行四边形的高相等,它们的面积也相等。而长方形的面积等于长乘宽,所以我想平行四边形的面积等于底乘高。
学生分组操作,教师巡视。
生(齐):验证完了。
生1:因为我们刚才发现底和长方形的长相等、高和长方形的宽相等的平行四边形面积和这个长方形的面积相等。我就想到了把平行四边形转化成长方形。
生1(从投影仪演示):我先从平行四边形的一个顶点画了一条高,这样剪出了一个直角三角形和一个直角梯形,把平行四边形转化成了长方形。
生2:形状变了,面积没有变。
生3:转化后的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
生1:知道。因为长方形的长与原来平行四边形的底相等,宽与原来平行四边形的高相等,而长方形的面积=长×宽,所以,平行四边形的面积=底×高。
生2:我也同意平行四边形的面积等于底乘高。
生1(投影以上演示):我的方法和××同学的差不多。但我是这样验证的:我画出了平行四边形的一条高,沿这条高把它剪成两个直角梯形,把一个直角梯形移到另一边,正好拼成一个长方形。
生(齐):听明白了。
生(齐):S等于ah。
生1:平行四边形的面积计算公式是底乘高,这个平行四边形的底是6米,高是4米,所以它的面积就是6×4=24平方米。
生1:平行四边形的一组底和高。
学生独立完成。
生1:我先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。结果是××平方厘米和××平方厘米。
生(齐):同意!
学生先独立思考,在课堂练习本上计算,再两人一组讨论、交流。
生1:这两个平行四边形的底相等,高也相等,因此它们的面积肯定相等。算式是1.4乘2.5等于3.5平方厘米。
生(齐):同意!
学生独立在课堂练习本上练习。
生1:我先求出麦田的面积为250×84=21000(平方米)=2.1(公顷),再求14.7÷2.1=7(吨)
生1:我们用转化的方法推导出平行四边形的面积公式。
生2:我知道了平行四边形的面积公式是S=ah 。
生3:我会用平行四边形的面积公式解决一些实际问题。
生4:我知道了等底等高的平行四边形面积相等。
生(齐):再见!
平行四边形的面积教学设计13
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、 出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、 课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、 这个长方形的宽与原来的.平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、 那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、 完成后让学生看书第65页例1
12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
平行四边形的面积教学设计14
教学内容:人教版五年级上册第六单元第一课时P87-88
教学目标 :
1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。
3.感受数学在生活中的作用,体验学习数学的乐趣。
教学重点和难点
教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积计算公式的推导过程。
教具学具:课件、一个平行四边形、剪刀
教学过程
一、创设情境,生成问题
1.故事导入
2.从平行四边形的`地中引出课题“平行四边形的面积”。
二、探索交流,解决问题
1.用数方格的方法计算面积。
(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)
(2)学生完成,汇报结果。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
2.推导平行四边形面积计算公式。
(1)提问:如果不数方格,能不能计算平行四边形的面积呢?
(2)引导解决方法:把平行四边形转化成长方形
(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平
行四边形和剪刀进行剪拼,教师巡视指导。
(4)学生汇报演示剪拼的过程及结果。
(5)教师用课件演示剪—平移—拼的过程。
(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
(7)出示讨论题,小组讨论。
(8)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?
S=ah
三、巩固应用,分层提高
1.教学例1
例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
S=ah=6×4=24(m2),
答:它的面积是24平方米。
2.练一练
(1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?
(2)判断题
(3)选择题
(4)求平行四边形的面积
(5)扩展题
四、回顾整理,反思提升
1.通过这节课的学习,你有哪些收获?
2.用本课所学的知识证明老财主没有偏心。
五、板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
平行四边形的面积教学设计15
教材分析
本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。
学情分析
在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。
教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点 理解公式并正确计算平行四边形的面积。
教学难点
用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。
教学准备每人准备一个长方形、平行四边形和一把剪刀。
教学过程
(一)剪剪拼拼,渗透转化。
(每生发一个长为10厘米,宽为15厘米的长方形)
师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?
师:今天我们要给长方形来变变样。
师:你有办法马上算出这个图案的面积吗?
师:为什么这么快就算出来了。
师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?
师小结:转化思想。
(二)创设情境,探究新知。
1、猜测平行四边形面积的计算方法。
师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?
2、组织探究活动。
同桌合作活动,活动前思考:
想一想,你准备把平行四边形转化成什么图形,为什么?
提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。
边操作边思考:
转化后的图形与平行四边形有什么关系?
你认为平行四边形的面积该如何计算?
4、交流探究结果
师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的。
5、推导面积公式
师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?
小结:回顾一下观察的'全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。
长方形的面积=长×宽
平行四边形的面积=底×高
师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah
(三)练习巩固,课堂拓展
1、求下面平行四边形的面积。
2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)
3、判断:哪个平行四边形的面积是2×3=6
4、看谁算得快
5、睁大眼睛,别看花眼啦
6、书本练习十五第7题。
7、书本第83页第5题。
【平行四边形的面积教学设计】相关文章:
平行四边形的面积优秀教学设计06-30
人教版平行四边形的面积的教学设计12-10
平行四边形的面积公式教学设计12-12
《圆的面积》的教学设计05-21
数学面积的教学设计08-19
圆的面积教学设计02-27
北师大版平行四边形的面积教学设计12-14
北师大版平行四边形的面积教学设计05-20
五年级《平行四边形面积》教学设计08-05