用比例解决问题教学设计

时间:2024-04-04 10:00:36 教学设计 我要投稿
立即下载

用比例解决问题教学设计

  • 相关推荐

  作为一名教职工,编写教学设计是必不可少的,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写才好呢?以下是小编整理的用比例解决问题教学设计,欢迎大家分享。

用比例解决问题教学设计

用比例解决问题教学设计1

  教学目标:

  1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  3、培养学生良好的解答应用题的习惯。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、复习铺垫,引入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

  (1)学生自己解答,然后交流解答方法。

  (2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

  二、探究新知。

  1、教学例5

  (1)学生再次读题,理解题意。思考和讨论下面的问题:

  ①问题中有哪三种量?哪一种量一定?哪两种量是变化的?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (2)根据上面三个问题,概括:因为水价一定,所以水费和用水的.吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (3)根据正比例的意义列出方程:

  12.88=χ10

  解:设李奶奶家上个月的水费是χ元。

  8χ=12.8×10

  χ=128÷8

  χ=16

  答:李奶奶家上个月的水费是16元。

  (4)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

  (2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

  (3)学生独立解答。

  (4)指名板演,全班交流。

  三、巩固提高。

  做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  四、课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  五、课堂作业。

  教科书P62练习九第3、7题。

用比例解决问题教学设计2

  教学内容:

  教科书第59页例5以及相关练习题。

  教学目标:

  1、使学生能正确判断题中涉及的量是否成正比例关系。

  2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

  3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

  4、在成功解决生活中的实际问题中体会数学的价值。

  教学重点:

  利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

  教学难点:

  正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

  教具准备:

  小黑板

  教学过程:

  一、复习铺垫,激发兴趣。

  1、填空并说明理由。

  (1)速度一定,路程和时间成( )比例。

  (2)单价一定,总价与数量成( )比例。

  (3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

  【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

  3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

  生1:把旗杆放下量。

  生2:爬上去量。

  生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

  师:相信通过这一节课的学习,你一定会找到解决的方法的。

  【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

  二、揭示课题、探索新知。

  1、小黑板出示例5

  张大妈:我们家上个月用了8吨水,水费是12.8元。

  李奶奶:我们家用了10吨水,上个月的水费是多少钱?

  思考:题中告诉了我们哪些信息?要解决什么问题?

  师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  (1) 学生自己解答。

  (2) 交流解答方法,并说说自己想法。

  算式是:12.8÷8×10

  =1.6×10

  =16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

  (也可以先求出用水量的倍数关系再求总价。)

  10÷8×12.8

  =1.25×12.8

  =16(元)

  【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

  师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  (3)小黑板出示以下问题让学生思考和讨论:

  1)题目中相关联的两种量是( )和( ) ,说说变化情况。

  2)( )一定,( )和( )成( )比例关系。

  3)用关系式表示是( )

  (4)集体交流、反馈

  板书: 水费 用水吨数

  12.8元 8吨

  ?元 10吨

  水费:用水吨数 = 每吨水的价钱(一定)

  师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程):

  学生独立完成,教师巡视。

  反馈学生解题情况。

  8

  12.8

  10

  χ

  解:设李奶奶家上个月的水费是χ元。

  12.8 :8 =χ:10 或 =

  8χ=12.8×10 8χ= 12.8×10

  χ=128÷8 χ=128÷8

  χ= 16 χ= 16

  答:李奶奶家上个月的水费是16元。

  【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

  (6)将答案代入到比例式中进行检验。

  你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  生交流,汇报。

  2、变式练习。

  刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

  张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  (1)比较一下改编后的题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,学生说一说你是怎么想的?

  3、概括总结

  师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

  学生讨论交流,汇报。

  师总结:

  1、分析找出题目中相关联的两种量。

  2、判断他们是否是正比例关系。

  3、根据正比例的意义列出比例。

  4、最后解比例。

  5、检验作答。

  【设计意图:归纳解题的策略,有助于提高学生解决问题的.能力。】

  三、巩固练习,形成技能。

  1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

  师提醒:同一时间、同一地点的身高和影长成正比例。

  学生读题后,先思考以下三个问题。

  ① 题中已知哪两种相关联的量?

  ②它们成什么比例关系?你是根据什么判断的?

  ② 你能列出等式吗?

  生独立完成,并汇报解答过程。

  2、教科书P60“做一做”。

  生独立解答。

  【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

  四、全课总结

  通过今天的学习,你有什么收获?

  五、布置作业

  练习九第3、5题。

  板书设计:

  用比例解决问题

  水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

  12.8元 8吨

  ?元 10吨 12.8 :8 =χ:10

  8χ= 12.8×10

  水费:用水吨数 = 每吨水的价钱(一定)

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元

用比例解决问题教学设计3

  一、教学内容:

  六年级下册教科书59、60页。

  二、教学目标:

  1、使学生能够正确判断应用题中涉及的量成什麽比例关系,能利用正(反)比例的意义正确解答实际问题。

  2、进一步培养学生应用已学的知识进行分析、推理的能力。

  3、在解决实际问题的过程中,开拓思维,体会比例在生产与生活中的应用,提高综合解决问题的能力。

  三、教学重点:

  认识正反比例实际问题的特点。

  四、教学难点:

  掌握用比例知识解答实际问题的解题思路。

  五、教学要素:

  1、已有的知识经验:

  (1)对正反比例意义的理解;

  (2)解简易方程。

  2、原型:

  用归一、归总方法来解决的实际问题。

  3、探究的问题:

  (1)如何用归一、归总法来解决例5、例6。

  (2)例5中哪一个量一定,两种相关联的量成什么比例关系。

  (3)例6中哪一个量是不变的量,两种相关联的量成什么比例关系。

  六、教学过程:

  (一)唤起与生成:

  关于比例的知识你都知道了哪些呢?

  1、怎样的两个量是成正比例的量?怎样的两个量是成反比例的量?

  2、怎样用字母表示正比例关系式?反比例关系式?

  3、判断下面的量各成什麽比例:

  (1)工作效率一定,工作总量和工作时间。

  (2)路程一定,行驶的速度和时间。

  引入:通过以上几节课学习,我们发现比例的知识在生活中有非常广泛的应用,本节课我们继续用比例的知识来解决实际问题。

  (二)探究与解决:

  1、出示教材例5,生读题。

  (1)用归一法解决例5:

  以前我们是怎样解决的?先求什麽?是按怎样的数量关系来求的?这道题里哪个数量是不变的?

  学生搞清上面问题然后用归一法来解决。

  (2)用比例解决例5。

  首先引导学生思考和讨论:

  A、问题中有哪两个量?

  B、它们是成什麽比例关系?你是根据什么判断的`?

  C、根据这样的比例关系,你能列出等式吗?

  学生讨论交流并明确:因为水价一定,所以水费和用水的吨数成正比。生尝试写出解答过程,一生板演。师注意规范解题格式。

  (3)小结:

  如何用正比例解答这类问题?生说一说,师予以完善:

  先按题意列关系式判断成正比例,再找出两种相关联的量相对应的数值,然后根据比值一定,也就是相对应数值的比值相等,列比例解答。

  2、出示例6,生读题。

  (1)用归总法解决例6。

  以前我们是怎样解决的?先求什麽?是按怎样的数量关系来求的?这道题里哪个数量是不变的?

  学生搞清上面问题然后用归总法来解决。

  (2)用比例解决例6。

  仿照例5的解题过程,用比例知识来解答例6。生尝试解答,一生板演。师结合生解答过程提问,使生弄清为什麽列成积相等的等式解答。

  (3)小结:

  生谈一谈解决例6这类问题的方法,师予以完善:

  先按题意列关系式判断成反比例,再找出两种相关联的量相对应的数值,然后根据积一定,也就是相对应数值的乘积相等,列等式解答。

  (三)小结与提高:

  1、总结解题思路:

  根据例5、例6的解题过程想一想,如何用比例知识解决这类问题:

  (1)生相互讨论,在小组内交流。

  (2)小组汇报交流,形成共识:

  师生共同完善并板书:

  判断比例关系——找出对应数值——列等式解答

  2、对学生学习表现进行评价。

用比例解决问题教学设计4

  一、教学目标

  (一)知识与技能

  在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

  (二)过程与方法

  通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

  (三)情感态度和价值观

  主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

  【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

  二、教学重难点

  教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

  教学难点:利用正比例的关系列出含有未知数的等式。

  三、教学准备

  课件。

  四、教学过程

  (一)复习回顾

  1.说说正比例、反比例的相同点和不同点。

  2.判断下列每题中的两个量是不是成比例,成什么比例?

  (1)已知A÷B=C。

  当A一定时,B和C()比例;

  当B一定时,A和C()比例;

  当C一定时,A和B()比例。

  (2)购买课本的单价一定时,总价和数量的关系。

  (3)总路程一定时,速度和时间的关系。

  【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  (二)探究新知,培养能力

  1.提出问题。

  教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

  课件出示教材第61页例5。

  思考:题中告诉了我们哪些信息?要解决什么问题?

  教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  2.解决问题。

  (1)学生尝试解答。

  (2)交流解答方法,并说说自己的想法。

  教师:谁愿意来说一说你是怎么解决的?

  预设1:

  28÷8×10

  =3.5×10

  =35(元)

  (先算出每吨水的价钱,再算出10吨水需要多少钱)

  预设2:

  10÷8×28

  =1.25×28

  =35(元)

  (也可以先求出用水量的'倍数关系,再求总价)

  教师:谁和这位同学的方法一样?

  【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  3.激励引新。

  教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  课件出示以下问题,让学生思考和讨论:

  (1)题目中相关联的两种量是()和( ),说说变化情况。

  (2)()一定,()和()成()比例关系。

  (3)用关系式表示是()。

  (4)集体交流、反馈。

  板书:

  教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程)。

  学生独立完成,教师巡视。

  反馈学生解题情况。

  解:设李奶奶家上个月的水费是x元。

  28:8=x:10或()

  8x=28×10

  x=280÷8

  x=35

  答:李奶奶家上个月的水费是35元。

  (6)将答案代入到比例式中进行检验。

  教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

  (7)学生交流,汇报。

  【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

  4.变式练习。

  教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

  张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

  (1)比较一下此题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,请学生说一说是怎样想的。

  5.概括总结。

  教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

  学生讨论交流,汇报。

  (1)分析找出题目中相关联的两种量。

  (2)判断它们是否是正比例关系。

  (3)根据正比例的意义列出比例。

  (4)最后解比例。

  (5)检验作答。

  教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

  【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

  (三)巩固练习

  1.只列式不计算。

  (1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

  (189:3=x:9)

  (2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

  (x:3=6:4)

  2.用正比例解决问题。

  (1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

  (2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

  【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

  (四)课堂小结,拓展延伸

  同学们,谁来说说,上了这节课,你收获了什么?

  【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

用比例解决问题教学设计5

  教学目标:

  用反比例知识解决问题优秀教学设计

  1.掌握用反比例的方法解答相关应用题。

  2.通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。

  3.培养学生分析问题、解决问题的能力。

  4.发展学生综合运用知识解决问题的能力。

  教学重点:

  掌握用反比例的方法解答相关应用题。

  教学难点:

  通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,掌握用反比例的方法解答相关应用题。

  教法:

  创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的.发散思维。

  学法:

  理解分析与合作交流相结合。

  教具:

  课件

  教学过程:

  一、定向导学(5分)

  1、判断下面每题中的两种量成什么比例?并说明理由。

  (1)总价一定,单价和数量。

  (2)我们班学生做操,每行站的人数和站的行数。

  (3)路程一定,速度和时间。

  (4)水费一定,每吨水的价钱和用水的吨数。

  2、出示目标

  (1)掌握用反比例的方法解答相关应用题。

  (2)熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。

  二、自主学习(10分钟)

  内容:课本62页例6

  1、方法:自主学习,小组合作

  2、时间:5分钟

  3、思考问题:

  (1)、题目中有哪些变化的量和不变的量?你是从题中哪里发现的?

  (2)、这三种量成什么关系?你是怎样判定的?

  (3)、列出关系式。

  4、跟踪练习

  这批书如果每包20本,要捆18包。如果要捆15包,每包多少本?

  三、合作交流(10分钟)

  1、课本59页“做一做”第2题

  2、六年级一班学生在操场做操,每行站4人,可以站9行。如果每行站6人,可以站几行?

  3、聪聪每分钟走60米,8分钟可以到家。如果她从家走到学校用了6分钟,每分钟走多少米?

  四、质疑探究(5分)

  针对学生的学习情况,重点强调用反比例知识解决问题的解题步骤和方法。

  (1)、题目中有哪些变化的量和不变的量?

  (2)、这三种量成什么关系?

  (3)、列出关系式。

  五、小结检测(10分钟)

  1、这节课有什么收获?你学会了什么?

  2、检测

  第64页的5、6、7、8题

  板书设计:

  用比例解决问题

  (1)、题目中有哪些变化的量和不变的量?

  (2)、这三种量成什么关系?

  (3)、列出关系式。

用比例解决问题教学设计6

  教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  一、复习铺垫,引入新课。

  师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。

  师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)

  出示:下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  二、探究新知

  (一)用正比例的知识解决问题(探究例5)

  1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的学习目标吧!

  出示学习目标:

  1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。

  2、过渡语:学习知识就是为了解决问题,你能运用学过的`知识去解决生活中的问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

  (让学生读李大妈的话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)

  师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁最先帮李奶奶解决这个问题!

  学生自己解答,然后交流解答方法。

  师:除了这种方法我们还可以用什么方法来解决了?

  生:比例

  3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

  4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)

  呈现自学提示:

  (1)题中有哪两种相关联的量?

  (2)这两种相关联的量成什么比例关系?你是怎么判断的?

  (3)你能根据这样的比例关系列出一个含有未知数的比例式吗?

  5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、

  师:谁来说说你是怎样用比例知识来解决问题的?

  根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)

  7、师:比较这两种解法,你们觉得哪种方法更好理解?看来,我们在解决问题时,不光可以从不同角度思考,找到不同的解决方法,而且还要善于选择最优化的方法。当然,没有要求时,用什么方法都可以,但要求用比例解时必须用比例。

  8即时练习

  过渡语:同学们帮助李奶奶解决问题,李奶奶把大家认真学习,帮助她解决问题的事情告诉了邻居王大爷,李大爷正为上个月交了19.2元的水费但算不出用水都少吨而犯愁,就急匆匆地赶过来向大家请教,大家愿意帮帮他吗?

  出示对话情景。

  师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?

  在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

  师:这次还需不需要老师给你一个解决问题的提示?

  一名同学在黑板上做,其余在下面做,形成一个竞赛的形式。演板的同学和大家交流自己的做题过程,教师进行鼓励和评价。

  9、师:上面两道题就是用正比例解决问题,通过大家亲身实践,你感受到用正比例解决问题需要几个步骤吗?

  (出示:表达是我的强项,让学生从学习提示、独立解决问题中逐步提炼归纳出自己做法,交流中逐步培养他们的表达能力。)

  师:同学们真是很棒!通过自学能够感受到用比例解决问题的步骤,这次老师想考考你们是不是真正的掌握了?你们敢应战吗?

  那么我们进行下一个环节:对比发现超越自我。

  (二)用反比例的知识解决问题(学习P60例6)

  师:解决了李奶奶、王大爷家的问题,下面的几个工人也遇到了问题,我们一起看一下吧。

  1课件出示情境图,了解题目条件与问题

  师:关于这个问题,同学们可以参考例5的学习经验来解决,看谁能用不同的方法来解决这个问题?

  生:独立解决,并在小组交流解题思路和计算方法

  师:谁来说说做这道题的解题思路(指名回答)

  学情预设:一般的方法是:有的同学用算术方法,有的同学能用反比例的方法解决这个问题,如30x=20×18,x=12。

  师:(教师手指30x=20×18,x=12。)为什么这样列式?根据是什么?

  学情预设:估计学生能说出列式根据,因为书的总数一定,所以包数和每包的本数成反比例.也就是说,每包的本数和包数的乘积相等。

  2.即时练习

  (课件出示:)如果要捆15包,每包多少本?

  师:会解决吗?

  生:独立解决,交流订正。

  3.对比正比例、反比例解决问题的相同和不同

  师:通过这2个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。现在请同学们观察例5和例6,说一说他们有什么相同和不同?

  生:以合作的方式探讨,然后派代表汇报探讨结果。

  比较以上两题的异同点,使学生明确都是用比例的知识解决问题,不同点在于题中两种量的关系不同,计算方法也就不相同。

  三、目标检测

  师:课本第60做一做,是生活中的另外的问题,同学们能不能帮助解决?(要求用比例知识解)

  学生自己独立解决做—做中的问题。

  师:请说一说题中的数量关系,再说一说解决问题的思路。

  学情预设:第1题,小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。第2题,用反比例关系可以解决这个问题。

  设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、课堂小结

  1、根据这节课的学习,你认为用比例解决问题的过程应该怎样想,怎样解答,可以归纳为哪几个步骤?(组内交流)

  讨论、汇报、师小结:

  (1)、分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例

  (2)、依据正比例或反比例意义列出方程

  (3)、解方程(求解后检验),写答

  设计意图:学生通过自学掌握了运用正比例解决问题,在这组题目中是用反比例解决问题,学生在对比中初步感受到怎样运用反比例解决问题的过程。

  2、师:这节课你有什么收获?有什么要提醒大家要特别注意的?

用比例解决问题教学设计7

  教学过程:

  一、 复习

  1.一辆汽车行驶的速度不变,行驶的时间和路程。

  2.一辆汽车从甲地开往乙地,行驶的时间和速度。

  看上面的题,回答下面的问题:

  (1)各有哪三种量?

  (2)其中哪一种量是固定不变的?

  (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

  3、这节课,我们就应用比例的知识解决一些实际问题。

  二、新授

  1、教学例5

  (1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

  (2)学生读题后,思考和讨论下面的问题:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的比例关系,你能列出等式吗?

  (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的'。

  (4)根据正比例的意义列出方程:

  解:设李奶奶家上个月的水费是χ元。

  12.8/8=χ/10

  8χ= 12.8×10

  χ=128÷8

  χ= 16 答:李奶奶家上个月的水费是16元。

  (5)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

  (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

  (3)指名板演,全班评讲。

  4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  三、巩固练习

  1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

  2、完成练习九第5、6、7题。

  四、总结

  用比例知识解决问题的步骤是什么?

  教学目标:

  1、 使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、 提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  3、 培养学生良好的解答应用题的习惯。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正分析题中的比例关系,列出方程。

用比例解决问题教学设计8

  教学目标:

  1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、导入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。

  我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。

  二、揭示目标:

  1、进一步熟练地判断成正、反比例的量。

  2、学会用比例知识解答比较容易的应用题

  三、探究新知。

  例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?

  自学指导一:

  1、理解题意,用以前学过的方法解答。

  2、题中有哪两种量?它们成什么比例关系?并说出理由。

  3、根据这样的`比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?

  4、解比例,检验,作答。

  小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  解:设李奶奶家上个月的水费是χ元。

  8χ= 12.8×10

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元。

  检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?

  自学指导二:

  1、题中有哪两种量?它们成什么比例关系?并说出理由。

  2、根据这样的比例关系,设要捆x包。你能列出等式吗?

  3解比例,检验,作答。

  检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

  交流总结:解答用正、反比例解的应用题的步骤:

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

  四.巩固延伸:

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?

  2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  3、500千克的海水中含盐25千克,120吨的海水含盐几吨?

  课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  课堂作业。

  教科书P62练习九第3、7题。

  板书设计:

  用比例解决问题

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

用比例解决问题教学设计9

  义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。)

  这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。

  正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。判断过程也是正反比例意义实际应用的过程。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。同时,由于解决问题时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。

  新课程理念非常重视数学应用意识的培养。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用,才能真正实现数学的价值。要培养学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的'角度寻找一种新的解决这种特殊数量关系的方法。从而丰富学生解决问题的策略,加强数学应用意义的培养。在教学设计和实践上,能否真正有效的培养学生的应用意识,其关键重要的一环是,如何引导启发学生面对实际问题,能主动尝试着从数学的角度运用比例的知识去解决问题。要为学生运用比例知识解决实际问题创造条件和机会。

  1、知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  2、过程与方法

  (1)通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  (2)借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  (3)通过策略多样化的训练,培养学生的发散性思维。

  3、情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  用比例知识解答比较容易的归一、归总应用题。

  掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  弄清题中两种量的变化情况。

  多媒体课件;小组学习记录卡。

  尝试教学法、引导发现法等。

  一、铺垫孕伏,建立表象。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)单价一定,总价和数量.

  (2)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1、出示例5情景图,说一说图意,了解数学事例。

  2、让学生自己解答,然后交流解答方法。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1、梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2、小组合作探究用比例解题的方法。

  发放学习记录卡(每个学习小组一张),小组合作学习。

  找出题中两种相关联的量,以及对应的数据,填写下表(未知的量用“x”表示)。

  和()的()相等。

  (三)形成策略,展示成果

  从上表可以知道()一定,所以()和()成()比例。也就是说,两家的()

  从上表可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或12、8:8=x:10),比例的解是x=16。(板书解法)

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方

  法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是19、2元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  三、应用策略,拓展新知

  1、例6:印刷厂工人忙忙碌碌在搬运印好的书,一位工人师傅说,这批书如果每包20本,要捆18包。另一位师傅说:如果每包30本,要捆多少包?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  2、学生独立解决课本上第59页的做一做中的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  五、巩固练习,考考自己(课件出示)

  1、独立去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2、仔细去分析,巧妙来选择。

  (1)李师傅5小时做80个零件,照这样计算,16小时可以做多少个零件?这题()

  A、用正比例解B、用反比例解C、不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订20xx本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是()

  A、1800X =20xx×40 B、20xxX=1800×40

  3、争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15 =100:X()

  (2)一辆汽车行驶100千米节约汽油2千克,照这样计算,行驶1500千米,可节约汽油多少千克?这是一道正比例应用题。()

  4、合理选条件,帮助他编题。

  小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

  小明需要你的帮助,你能帮助他编编题吗?

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:教科书P62练习九第3、7题。

用比例解决问题教学设计10

  教学内容:

  人教版课标教材六年级下册第59—60页 例5、例6。

  教学目的:

  1、让学生掌握用正、反比例的方法解决问题。

  2、使学生体验由算术解法向比例解法的思维转化过程。

  3、形成解题多样化技能。

  教学重难点: 重点:学会用正反比例方法解决问题。

  难点:在具体情境中区别用何种比例解决问题。

  教学过程:

  一、 复习

  师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

  (出示题目)

  1、a×b=c(a、b、c均不等于0)

  当a一定时,b和c成什么比例?

  当b一定时,a和c成什么比例?

  当c一定时,a和b成什么比例?

  2、速度×()=路程

  工作总量÷( )=工作时间

  ( )×数量=总价

  总本数÷( )=每包本数

  每袋重量×( )=总重量

  师:这节课,我们一起来学习用解决问题。

  二、 新授

  1、出示例5

  ① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。

  ② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

  水费:吨数=单价

  ③ 学生述说,教师板演用正比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  (2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

  (3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

  小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

  2、出示例6(学生自己解答)

  ① 抓住不变的东西----总的本数判断成反比例关系

  ② 建立关系式:每包本数×包数=总数

  ③ 学生述说,教师板演用反比例解法的.书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

  (2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

  (3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

  3、深化练习:

  一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

  三、全课小结

【用比例解决问题教学设计】相关文章:

用比例解决问题教学反思04-14

《比例的应用》教学设计优秀11-01

比与比例教学反思11-26

比例教学反思11-08

比例的意义教学反思10-06

《我用残损的手掌》教学设计10-20

二年级数学《解决问题》教学设计06-28

正比例教学反思04-09

《反比例意义》教学反思08-28