分数乘法教学设计

时间:2024-10-25 13:21:00 教学设计 我要投稿
立即下载

分数乘法教学设计

  作为一位杰出的老师,通常需要用到教学设计来辅助教学,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。优秀的教学设计都具备一些什么特点呢?以下是小编为大家整理的分数乘法教学设计,仅供参考,大家一起来看看吧。

分数乘法教学设计

分数乘法教学设计1

  教学目标

  1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

  2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点:

  理解整数乘以分数的意义,并能证确计算。

  教学难点:

  运用所学的知识解决分数乘法的实际问题

  教学过程

  一、复习导入:

  1、2/3×2表示的意思是()。

  2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。

  3、请学生计算下列分数乘法运算题。

  1/8×3

  3/10×4

  7/24×12

  二、情境创设

  教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?

  1、教师让学生思考这个题,并对学生进行提问。

  2、引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的'苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

  3、教师提问学生说一说自己是怎样计算的?

  4、学生自己动手填完课本例题上的方格。

  5、怎样表示笑笑的苹果数?

  6、教师板书(笑笑:6×1/3=2)

  7、总结分数乘法的意义就是求一个数的几分之几是多少。

  8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

  三、巩固练习:

  1、计算8×3/10

  4×3/10

  24×3/8

  2、做课本5页试一试1题,36的1/4和1/6分别是多少?

  注意让学生体验求一个整数的几分之几是多少的数学意义。

  3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

  四、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  【板书设计】

分数乘法教学设计2

  教学目标:

  1、结合具体情境,探究并理解分数乘整数的意义;

  2、探究并掌握分数乘整数的计算方法,并能正确计算;

  3、能正确运用“先约分再计算”的方法进行计算。

  4、能运用所学知识解决生活中简单的实际问题。

  教学重点

  1、结合具体情境,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  教学难点:

  能正确运用“先约分再计算”的方法进行计算。

  教学准备:

  多媒体课件PPT,卡片,记号笔等

  教学过程:

  环节一:创设情景,初步探索

  1、谈话引入:一张纸,可以剪出很多同样的图案来,老师在剪纸的过程中发现这里居然也蕴含了数学知识,今天特意带来了,我们一起来研究研究它,有没有兴趣?

  2、出示情境图

  (1)一张彩纸,什么意思?(课件演示)

  (2)出示问题:1个占整张彩纸的1/5,3个占整张彩纸的几分之几?能解决这个问题吗?先独立思考,完成学习单一的第一题,看谁的解决方法多?

  3、学生自行思考完成,巡视要求写出具体的过程,让不同做法的同学板演。

  4、学生汇报:(学生可能出现的情况)

  预设第一种方法:用加法算的:就是1/5+1/5+1/5=1+1+1/5=3/5,3个1/5相加,因为同分母分数相加,分母不变,分子相加。

  预设第二种方法:用乘法算的:1/5×3=1×3/5=3/5。求3个1/5,可以用1/5×3来计算,它表示3个1/5相加,根据同分母分数相加的方法,分母不变,分子相加,分子3个1相加可以写成1×3,得出3/5。

  5、还可以怎样列式?

  师:不仅能用旧知识解决问题,还探索出新方法。由此可见,求几个相同的分数的和,可以用乘法计算。这与整数乘法的意义是相同的。(把加法的板书和乘法的板书有机的结合起来。)

  环节二:合作学习,探究新知

  1、我们来探究:(小组活动)

  师:你们的独立思考能力杠杠的,我还想见识见识你们小组合作学习的`能力。所以,我们来探究:2个3/7的和是多少?涂一涂,填一填,算一算,说一说。

  出示小组活动要求,明确要求:涂一涂,填一填,算一算,议一议,写一写,贴一贴。

  2、小组代表汇报。

  3、你认为这计算过程中,哪些部分可以省略?

  4、轻松练笔

  师:我们参与,我们交流,我们发现。用我们的发现练练笔吧。

  1、独立计算,在小黑板上展示,每人一题,组长检查指导。说明:全对的每组奖励2颗星。

  2、小组长交叉评分

  3、总结:谁来说说分数与整数相乘的计算方法?谁还想说?学生用自己的语言表达。(出示板书:分数与整数相乘,分母不变,分子和整数相乘)

  环节三:课堂检测,巩固内化

  1、完成课堂检测题

  学到知识了吗?老师要考考你们,敢不敢接受挑战?请在4分钟内完成课堂检测题。

  2、集体评讲。

  环节四:总结反思,升华新知。

  本节课有什么收获?还有什么不明白的地方吗?点评各组的表现。

  环节五、作业。

  课本23页练一练第3题,24页第7题。

  六、板书。

分数乘法教学设计3

  一、教学目标:

  1、经历分数乘法计算方法的探索过程,理解分数乘法的意义,体验直观模型与转化思想的运用。

  2、掌握分数乘法的计算方法,能正确进行分数的乘法运算。

  3、会解决有关的应用问题,体会分数乘法的在生活中的运用。

  二、教学重点:经历分数乘法计算方法的探索过程,理解分数乘法的意义,体验直观模型与转化思想的运用。

  教学难点:会解决有关的应用问题,体会分数乘法的在生活中的'运用。

  三、教学过程

  (一)激趣导入,明确目标。

  复习旧知。今天让我们在学习整数乘法的基础上学习分数乘法,板书课题:分数乘法一

  我们知道数学和我们的生活息息相关,它隐藏在生活中的各个角落,我们的老朋友淘气和笑笑在摆卡片时就遇到了一个数学问题,读题,你能帮他们解决这个问题吗?

  (二)自主探究,合作学习。1、1个卡片占整张纸条的五分之一,3个卡片占整张纸条的几分之几?把自己的方法写在练习本上。

  教师巡视,搜集三种方法。

  (三)小组汇报,交流评议。找三名同学在到前面展示自己的方法。

  第一种方法:画图

  教师提问这个算式说了几个五分之一,三个

  五分之一,三个五分之一就是五分之三。

  通过画图的方法让学生理解3个五分之一是多

  少?

  第二种方法:用加法计算,3个五分之一连续相加,同分母分数

  加法,结合以前学过的知识来解决问题。

  第三种方法:用乘法计算,五分之一乘以三,教师针对学生的讲解进行提问,怎么想到用五分之一乘以三的,五分之三乘以一表示什么?教师补充算式,提问学生之前有没有遇见过类似的写法,引导学生说出整数乘法的意义同样适用于分数乘法。2、2个七分之三的和是多少?下面的算法你看懂了吗?与同伴说一说。

  引导学生先看,看懂后再和同伴交流。指名到黑板前讲解书中的算法。

  3、算一算,16分之5乘以3

  2乘以9分之5

  通过计算总结分数与整数相乘如何计算。分子和整数相乘分母不变。

  四、多彩训练,拓展延伸。做23页练一练1——3题。

分数乘法教学设计4

  一、“分数乘法”教学中存在的问题

  1.对目标把握不够。

  新课程标准强调教学目标的全面性和具体化, 强调学习方式、教学活动的多样化。然而,部分教师在“分数乘法”的教学中往往过于追求课堂气氛,对一些习题的铺垫和延伸过于繁多,教学调控能力不强,重难点把握不好,因而出现了课堂教学中主次不分、本末倒置的混乱现象,影响了数学教学的优化和整合,影响了教学目标的落实。

  2.备课缺乏针对性。

  在新课程背景下,部分数学教师的备课缺乏针对性,他们的备课大多是以教师用书为参考依据,甚至是照抄现成的教学方案,没有根据教材要求和学生的实际需求备课,因此教学方法缺乏可操作性和适切性。如在教学“分数的意义”时,有的教师教学生找关键字,如“比”“是”“相当于”等,甚至告诉学生关键字后面就是单位“1”,从而导致学生思维狭窄,进而出现计算错误。

  3.缺乏有效教学策略。

  相当部分的教师受传统课堂教学观念的影响, 教学方法单一,教学手段陈旧,无法满足新课程的标准和学生的实际需求,在教学中没有完善、有效的教学策略,课堂教学缺乏实效性。

  4.“以生为本”的认识不到位。

  教师在课堂教学中依然是传统的满堂灌的教学方式,与学生的交流互动太少,没有根据学生的实际需求和对知识的接受程度来推进课程,有些教师根本就不让学生有质疑的机会,以至于学生的学习积极性不高,学习效率也比较低。

  二、“分数乘法”有效性教学的思考

  1.优化教学目标,合理设计教学环节。

  根据学生已有的基础知识,我认真分析教材,把 “分数乘法”的教学目标定为:使学生掌握“求一个数的几分之几是多少,用乘法计算”,并能举一反三解决类似问题;教学重难点定为“由求一个数的几倍过渡到求一个数的几分之几”。有了这样的教学思路, 我再针对“分数乘法”教学中经常出现的问题进行教学设计:

  (1)铺垫要与新课紧密联系。一节成功的数学课, 往往与教师的导入、铺垫有关。所以在教学中,我非常注重新课的引入,如在“分数乘法”教学中,我设计了下面的铺垫:

  1口算下面各题。

  2说说下面各题中谁与谁比,把什么看作单位“1”。

  女生人数占全班人数的4 /9。

  陆地面积是地球面积的29/ 100。

  汽车速度相当于飞机速度的1/ 5。

  甲的3/ 5相当于乙。

  这样的设计,为学生复习旧知识作了引导,同时为新课做了铺垫,在找单位“1”的题中我加入“甲的3/5相当于乙”的题目,目的是让学生知道找单位“1” 不能只找关键字,而是要知道谁与谁比、谁是谁的几分之几,要把谁看作单位“1”。

  (2)新授要从旧知自然过渡。新教材编写的一大特点是注重新旧知识的联系,教师应根据这一规律, 合理利用已有的教学资源进行教学。如我结合前面铺垫题中找单位“1”的问题,把“倍数”变成了“分率”“,几倍量”变成了“分率的对应量”,“一倍量”变成了单位 “1”的对应量,数量关系也就变为“单位‘1’的对应量× 分率=分率的对应量”。为了提高数学教学的有效性, 我从学生的生活实际出发,通过贴近学生生活的实例,让学生观察、实践,把教材中的实例活动化。在教学中,我将教材例题转化为生活中的实例,创设问题的情境,诱发学生学习数学的'兴趣,让学生去感受和体验数学的奥秘,如解决喝了多少升水的问题。

  一桶水有12升,昨天喝了1/ 4,昨天喝了多少升?

  这样设计有几个优点:一是把分数乘法的意义用两种不同的表述方式呈现出来,使学生进一步理清分数乘法的意义,让学生明白分数乘法的意义是整数乘法意义的扩展,二者在本质上完全一致,只是在表述方式上有所区别,从而对分数乘法的意义有比较全面、完整的认识。二是编排逻辑更加清晰,先让学生理解分数乘法的意义,解决“如何列式”,再解决“如何计算”。三是突破了教材的限制,通过“问题设置”去解决“求一个数的几分之几是多少”,从而拓宽了素材选择范围。四是问题生活化,设计的问题接近学生的生活实际,激发了学生的兴趣,从而顺利实现了“求一个数的几分之几用乘法计算”这一知识目标。

  (3)巩固练习既要有针对性又要多样化。为了进一步让学生对分数乘法加深印象,牢固掌握本课知识,我由浅入深地精心设计巩固练习,帮助学生巩固本节课的知识,让巩固练习既有针对性又多样化,全方位了解学生掌握知识的情况,巩固了“分数乘法”的概念。

  2.实施多样化的教学,减轻学生课余负担。

  传统的小学数学教学模式比较单一,已经难以满足时代的变化和学生需求。因此,在新课程的背景下,教师要不断地创新“分数乘法”的教学模式,在抓好分数乘法的基础知识与基本技能训练的同时,根据小学数学教学大纲内容,适当地补充数学信息,加深学生对分数乘法的理解和感悟,进一拓宽学生的思维空间。如我在设计练习时,将看图列式中的“求己修的是多少千米”的问题,通过课件移动变为“求未修的是多少千米”的问题,通过直观的图形转换, 学生不仅加深了对分数乘法应用题中量率对应的理解,而且轻而易举的掌握了较复杂的分数乘法应用题的解题思路,达到了加大课堂教学密度、减轻学生课余负担的目的。

  3.讨论、交流、合作,让学生成为课堂的主人。

分数乘法教学设计5

  教学内容:

  P17~19连续求一个数的几分之几是多少的分数乘法应用题

  教学要求:

  1、使学生掌握连续求一个数的几分之几是多少的分数乘法应用题的解答方法,并会正确解答这类应用题。

  2、让学生进一步体验数学与日常生活的密切联系,在共同的探讨中培养合作意识。

  教学重点:

  理解题意,分析数量关系。

  教学难点:

  两次判断谁作单位“1”的量。

  教学过程:

  一、回顾旧知,复习铺垫

  1、指出下面每题中的.两个量,应把谁看作单位“1”。

  (1)男生人数占全班的。

  (2)图书总数的是科技读物。

  2、指出下面各题中的两个分数,各把什么看作单位“1”。

  (1)苹果的重量是橘子的,梨的重量是苹果的。

  (2)篮球的个数是足球的,足球的个数得排球的。

  3、一根电线长10米,用去,还剩下这根电线的几分之几?还剩多少米?

  二、引导探索,学习新知

  1、揭示课题。

  今天我们来学习连续求一个数的几分之几是多少的分数乘法应用题。

  2、创设情境,引出例题

  小亮、小华、小新三人在说班里同学们理想,请看他们的对话:

  小亮:我们班有36人。

  小华:的同学长大后想成为教师。

  小新:想成为科学家的人数是想当教师人数的。

  学生提出数学问题

  3、动手操作,理解题意,学生动手画线段图

  4、主动尝试,解答例题

  (1)讨论,学生交流解题方法,并尝试解答。

  (2)汇报,学生说解题过程,第一步求什么?第二步求什么?

  板书:想成为教师的人数:36×=12(人)

  想成为科学家的人数:12×=9(人)

  (3)追问:第一步求想成为教师的人数,就是求什么?

  第二步求想成为科学家的人数,就是求什么?

  三、巩固深化,拓展思维

  P18第4题。让学生说说每一步求的是什么?谁是单位“1”?

  四、小结

  在解答应用题时,每一步都要找准单位“1”,如果是求“一个数的几分之几是多少”,就用乘法进行计算。

  五、课堂练习,辅助消化

  1、P19第9、10题。

  2、P19第6题。

  六、课外补充,拓展延伸

  1、三个修路队合修一条公路,甲队修了12千米,甲队修的等于乙队的,丙队修的相当于乙队修的。丙队修了多少千米?

  2、有三筐苹果,第一筐苹果重28千克,第二筐苹果是第一筐的,第三筐苹果的重量比第二筐的多5千克。第三筐苹果重多少千克?

分数乘法教学设计6

  教学内容:

  北师大版小学数学五年级下册第2-4页。教材分析:

  《分数乘法

  (一)》是在学生学习了整数乘法意义以及分数加减法基础上教学。本节主要内容求几个相同分数的和,将分数乘法与整数乘法相联系,并探索出分数乘整数计算方法。同时为以后分数乘分数打基础。

  学情分析:

  学习本课以前,学生已经理解了整数乘法的意义,掌握了约分的方法。通过本节课的学习,目的使学生理解并掌握分数乘整数的意义和计算法则,并练习运用分数乘整数的计算法则进行计算。

  教学目标:

  1.结合具体情境,在操作活动中,探索并理解体会分数乘整数的意义。

  2.探索并掌握分数乘整数及计算方法,能正确计算。

  3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  教学重点、难 点:学生能够熟练的计算整数乘以分数。

  教法:根据教材内容以及生年龄特点,采用多媒体演示法、启发式教学法、引导发现法、讲授法,通过观察探索,获取知识,激趣。通过启发引导,使学生的思维活动在师引导下层层展开,使他们听有所思,做有所获。教学中,我采用多媒体辅助教学,这样突出教学效果,优化课堂教学。

  学法:在教学中,学生始终是学习的主体,教师要交给学生有效的学习方法,使学生学会学习。在本课的教学中,依据教学内容,通过自主探究、动手实践、合作交流的学习方法,使学生理解分数乘法意义,掌握分数乘整数计算方法。这样可以充分调动学生学习的积极性和主动性,使学生不仅学会而且会学。

  教学准备:课件。教学过程:

  一、创设情境,提出问题

  1、师:水是生命之源。可在我们国家的北方......

  听了这些,你有什么感想?(节约用水)

  2、师:我们做过这样一个测试:(课件出示)一个漏水的水龙头每小时滴水

  ,3小时滴水多少桶?

  【设计意图:通过创设缺水、节水的生活情境,既教育学生养成良好的环保

  意识,有为进一步激发学生的学习兴趣打下基础。】

  二、合作探究,发现新知

  (一)分数乘法的意义

  1、提出问题:怎么解决这个问题?试一试。

  2、小组讨论交流各自方法。

  3、集中汇报: 方法一:画图法。方法二:用加法。方法三:用乘法。

  4、思考:根据算式

  ,你有什么发现?

  生答,师小结:求几个相同加数的和,可以用乘法计算。分数乘整数的意义与整数乘法的意义相同。

  5、小练习:

  说一说下面算式的意义。

  【设计意图:鼓励学生用多种途径解决问题是我们学习数学的一个重要理念。让学生根据自己的知识经验解决问题,体验成功的喜悦。同时,通过学生独立思考,培养学生自主探究能力,通过小组讨论交流,培养学生小组合作意识,这一环节体现了学生是学习的主体,要充分发挥学生学习的主动性。】

  (二)分数与整数相乘的计算方法。

  1、涂一涂,算一算。

  (1)2个

  的和是多少?

  (2)3个

  的和是多少?(生利用题卡练习。)

  2、引导观察发现:

  3、总结方法:分数乘整数,分母不变,只把分子与整数相乘做分子。

  4、试一试:

  (三)计算方法小技巧。

  51、计算6×

  92、通过同一道题,两种方法的比较,你有什么发现?

  (1)能约分的要先约分。

  (2)最后的结果应该是最简分数。

  【设计意图:这样的设计由浅入深、环环相扣,既巩固了本节课的知识,又

  培养了学生解决问题的能力,发展了学生思维的灵活性。】

  三、巩固练习,理解算理

  1、我会涂。

  2、我会算。

  5435 ×7 ×15 ×2 ×21 285818647a1×

  ×25 0×

  ×b(a、b为自然数)

  1325953、我会解决问题

  1、打一份书稿,每天完成,5天完成书稿的积分只几? 1342、一篮鸡蛋重 千克,8篮同样的鸡蛋重多少千克?

  543、一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨25大豆呢?

  14、(1)一堆煤,每天用去 吨,3天一共用去多少吨?

  51(2)一堆煤,每天用去,3天一共用去多少?

  5【设计意图:由易到难的递进学习,是数学学习不可缺少的环节。这几道题,有动手做,到数字抽抽象,再到技巧的应用促进了学生练习的`层次性和思考价值。】

  四、反思学习,体验策略

  1、通过今天的学习,你学到了什么?

  2、和小组同学交流一下,你是怎样学到这些知识、的?说说你的快乐、你的困惑和你的建议。

  【设计意图:让学生先总结,既梳理了学生的思路,又使所学的知识及时内化,形成了良好的认知结构。同时还培养了抽象概括能力,让学生学会反思。】

  板书设计

  1/5+1/5+1/5

  3×1/5 =1+1+1/5

  =1/5+1/5+1/5

  =3/5

  =1+1+1/5

  =3×1 /5

  =3/5

  意义:求几个相同分数的和的简便运算 方法:分子和整数相乘做分子,分母不变。

  【这样的板书设计,突出了教学的重点,解决了教学难点。使教学内容一目了然,便于学生理解掌握。】

分数乘法教学设计7

  1、分数乘法

  第一课时分数乘整数

  教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

  教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

  重难点、关键

  分数乘整数的计算方法。

  教学准备:电脑课件

  教学过程:一、旧知铺垫

  1、计算下列各题

  2/11+2/11+2/11

  过程要求

  (1)写出计算过程。

  (2)说一说分数加法的计算方法。

  2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?

  二、探索新知

  1、教学例1

  (1)出示例题

  根据题意,电脑课件呈现示意图。

  (2)根据题意列出解答算式:

  2/11+2/11+2/11=2+2+2/11=6/11

  2/11×3=6/11

  (3)探索分数乘整数的计算方法。

  师:2/11×3=,说一说你是怎么想的?

  ①学生在小组交流各自的想法

  ②小组讨论后反馈思维的过程和结果

  教师板书:

  ③总结分数乘整数的计算方法。

  A、学生口述分数乘整数的'计算方法;

  B、教师整理并板书:

  分数乘整数,整数与分子相乘的乘积作分子,分母不变。

  2、教学例2

  计算:3/8×6

  (1)学生独立计算。

  (2)交流计算方法和步骤。

  (3)比较计算过程,看一看哪一种更为简单

  (3)归纳:能约分的要先约分,再计算。

  三、巩固练习

  1、完成课本“做一做”。

  (1)学生独立完成,然后计算过程和结果。

  (2)第3题,说一说你是怎样计算的?怎样想的?

  一般要求学生列综合算式计算。如:

  6/7×10×7==60(kg)

  2、课本练习二第1、2题

  四、课后作业设计

  一、计算

  7/8×73/4×81/9×31/2×4

  5/6×55/18×327×2/33/816×

  三、列式计算

  1、3个5/8是多少?2、2/3的6倍是多少?

  3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?

  课后反思:

  第二课时分数乘分数

  教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

  教学目标:

  1、理解一个数乘分数就是求一个数的几分之几是多少。

  2、掌握分数乘分数的计算方法,并能正确地进行计算。

  重难点、关键:

  1、重难点:分数乘分数的计算方法。

  2、关键:理解一个数乘分数就是求一个数的几分之几是多少。

  教学准备:实物投影或者电脑课件。

  教学过程:

  一、创设情境引入新课

  教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

  出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

  师:能提出什么问题?

  学生提问题,教师板书。

  以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

  师:怎样列式?(板书1/5×4)

  师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

  让学生计算,并说说怎样计算。

  师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

  学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

  师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

  板书课题:分数乘分数

  二、操作探究计算算理

  1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

  学生操作。

  学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

  师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

  小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

  学生自己涂色。

  师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

  师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

  学生讨论交流汇报。

  教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

分数乘法教学设计8

  教学目标

  1.结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

  2.能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3.使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点;:理解整数乘以分数的意义,并能证确计算。

  教学难点:运用所学的知识解决分数乘法的实际问题

  教学过程

  一、复习导入:

  1.2/3×2表示的意思是( )

  2.计算分数乘整数时,用分数的( )和整数相乘的积作( ),分 母( ).

  3.请学生计算下列分数乘法运算题。

  1/8×3 .3/10×4 .7/24×12

  二、情境创设

  教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2 ;笑笑的苹果是小红的1/3 ,淘气和笑笑各有几个苹果?

  1.教师让学生思考这个题,并对学生进行提问。

  2.引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的`1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

  3.教师提问学生说一说自己是怎样计算的?

  4.学生自己动手填完课本例题上的方格。

  5.怎样表示笑笑的苹果数?

  6.教师板书( 笑笑:6×1/3=2)

  7.总结分数乘法的意义就是求一个数的几分之几是多少。

  8 怎么计算呢?6×1/2 =6×1/2 =3 6×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

  三、巩固练习:

  1.计算8×3 /10 4× 3/10 24×3/8

  2.做课本5页试一试1题,36的1/4 和1/6 分别是多少?

  注意让学生体验求一个整数的几分之几是多少的数学意义。

  3 . 试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

  四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

  【板书设计】

  分数乘法(二)

  6× 1/2 = =6×1/2 =3 6×1/3==6×1/3=2

  整数乘以分数的意义:就是求整数的几分之几是多少?

  整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

  教学反思:本节课有以下优点:1.针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。2.抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

分数乘法教学设计9

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的'钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

分数乘法教学设计10

  (一)教学设计与反思

  一、教材分析

  《分数乘整数》是北师大版五年级下册第三单元的第一课。学生在二年级已经学习了整数乘整数计算,了解求几个相同加数的和可以用乘法计算,在上册学生刚刚学习了分数的加法。本课分数乘整数的计算是这两方面知识的发展,分数乘整数的意义和整数的乘法的意义是相同的,只是这里的相同的加数变成了分数。

  二、学情分析

  本课的授课对象是五年级的学生,学生通过之前的学习,对于乘法、分数直观感知和认识上已有了一定的基础,掌握了整数乘法和分数加法的计算方法。作为五年级的学生应进一步提高知识的综合运用能力,在学习中去探索、掌握、交流解决问题的思考策略。

  三、教学目标

  1.知识与技能

  (1)在原有知识基础上,引导学生观察、讨论、猜想、验证、探索并理解分数乘整数的意义。

  (2)探索并掌握分数乘整数的计算方法,能正确计算。

  (3)能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  2.过程与方法

  让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法。

  3.情感态度与价值观

  (1)结合具体的题例,感受计算分数乘整数的愉快感,产生积极的数学学习情感。

  (2)体会数形结合的思想,渗透简便运算的算理。

  四、教学重、难点

  教学重点:理解并掌握分数乘整数的计算方法。2.教学难点:探索并理解分数乘整数的意义。

  五、教具准备

  课件、作业纸

  六、教学流程

  一、复习旧知识,引入新课 1.说出下面算式表示的意义。9 X 3 4 X 6 12 X 10 2.问整数乘法表示的意义。

  2/9+2/9+2/9+2/9=?提问计算结果并板书。问:这道题每个加数有什么特点?你是怎样计算的?

  师:像上面的求几个相同的分数相加的和有没有简便的方法呢?这就是我们今天要学习的新课+——分数乘法。

  二、合作探究、发现新知 1.投影示意图,学生读题

  1个松树图案占整张纸条的1/5,3个松树图案占整张纸条的`几分之几? 师:用以前学过的任意一种方法来解决上面的问题。

  (要求:

  1、每人用一种方法解决问题,可以在作业纸上画、涂、算)

  2.以小组为单位进行讨论,交流各自有效的方法

  师:好了,大家坐好!刚才呀,老师看到到同学们讨论得非常热烈,能感觉到我们五(1)班的同学很乐于思考,善于交流。现在请同学说说你是怎么做怎么想的?

  生:我是通过画线段图的方法来求的。(高高的举起作业纸述说)师:这是画图法,这个方法很容易让我们看清楚了是 3/5,还有不同的方法吗?

  生:我是用分数的加法来做的: 1/5+1/5 +1/5 =1+1+1/5= 3/5 师:分数的加法,对。还有不一样的方法吗?再想想!生:把分数转化成小数来算: 1/5=0.2 0.2+0.2+0.2=0.6 师:不错,这种方法也想到了。还有吗? 生:用 1/5×3也是 3/5 师:真厉害!用乘法计算。

  三、回顾小结、形成认知 师:为什么可以用乘法计算?

  师:先看看分数的加法,加法中的加数有什么特征?1/5、1/5、1/5 生1:加数相同。

  生2:求几个相同加数的和可以用乘法计算。

  得出结论:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。(只是这里的相同加数是分数)

  师:分数和整数相乘怎么计算呢? 生: 1/5×3= 3/5 师:具体一些,计算方法。

  生:1/5×3,3和1相乘得3,分母不变,所以是 3/5 师:说得很好,我们继续探究那么为什么3×

  1、分母不变呢?(根据大家的回答,结合分数的加法,出示等式:)1/5×3=1/5+1/5 +1/5 = 3×1/5=3/5 师:同时 1/5×3可以表示什么意思? 生:3个 1/5是多少?

  师:那它还可以怎样列式?(3X1/5)

  师:同桌讨论一下分数乘整数的计算方法,用数学语言怎么说? 师:谁来汇报一下?

  生:分数与整数相乘,分子和整数相乘,分母不变。师:表扬这位同学,这位同学真能干。

  师:同学们知道了计算方法,接着我们再来看看下面的题目: 1.涂一涂,算一算并想一想:你觉得自己能从图中想出什么数学问题? 2个3/7的和是多少?

  教师引导其他学生进行针对性的分析。

  问题解答:

  3/7X2=3/7+3/7=3X2/7=6/7 2.说一说,分数乘整数是怎样计算的? 计算5/16X3 2X5/9 学生独立完成

  师:以上计算,分数乘整数怎样计算呢?

  学生讨论得出法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  师:我们归纳一下分数乘整数的计算方法: 1.求几个相同加数的和用乘法计算。

  2.分数与整数相乘,分子和整数相乘,分母不变。

  四、课堂小练

  1.教材第23页“练一练”第一题。学生先独立完成,再集体讲评。2.教材第23页“练一练”第二题。3教材第23页“练一练”第三题。开火车回答

  五、试一试 1.计算6X5/12 学生板演

  师:在计算6X5/12你是怎样做的?

  指出分数乘整数时,分子和整数相乘,如果分母和整数能约分的要约分在乘,这样比较简便。2.师:大家可以感受到分数乘整数带来的简便,在计算时要注意方法,看看小乌龟做的两道题,判断一下。

  师:谁来汇报一下,你来,说说你是怎么想的? 1/12×6=2 6/7×2=3/7 生:第一个应该是,而不是1/2.2是作为分母的,不能写成整数。生:第二个整数不能和分子约分,整数要和分母约分。应该是12/7。师:大家同意吗? 生:同意。

  师:分数乘整数,约分时是整数和分母约分,不能整数和分子约分,计算结果可以是假分数也可以是带分数,书写时候要注意,不能产生笔误。

  六、反思学习、引申思考

  师:这节课我们学习了什么?你有什么收获? 生1:分数乘整数。

  生2:求几个相同加数的和用乘法计算。

  生3:分数与整数相乘,分子和整数相乘,分母不变。生4:计算时,能约分的可以先约分,再算出结果。

分数乘法教学设计11

  1.教学内容

  小学数学分数乘法教学,这部分内容的学习是在已学的整数乘法的意义和分数加法计算的基础上进行的。让学生继续巩固理解分数乘法的意义,理解分数乘以分数和意义,掌握其计算法则,能够比较熟练地进行计算,利用整体展示,使学生找出知识的规律,进一步培养学生的合作交流意识。

  2.整合思路

  引导学生用数一数、加法计算、乘法计算三种方式来解决问题。在交流的过程中,让学生体会分数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。

  3.教材简析

  为了促进学生更好地探索和理解分数运算的意义,教材安排了大量的折一折、涂一涂等活动,把图形语言作为理解的基础。实际上,教材非常重视文字语言、图形语言和符号语言的结合,三者相辅相成,从多种角度为学生理解问题、解决问题提供了可能。

  4.教学重点

  学生能够熟练地计算整数乘以分数,会用分数乘整数的计算法则正确地进行计算。

  5.教学难点

  分析和解决分数乘整数的实际问题。

  二、教学目标

  1.知识目标

  结合具体情境,进一步探索并理解分数乘整数的意义,并能正确计算。

  2.能力目标

  能解决简单的'分数乘整数的实际问题。

  3.情感目标

  体会数学与生活的密切联系。

  三、教学流程

  1.创设情境,导入新课

  师:(多媒体课件出示一条围巾)亲爱的同学们,天气变凉了,我想织一条围巾。但我每小时只能织5厘米。根据这个已知条件,你能提出怎样的数学问题呢?

  (学生马上回想到可能提出的是整数或分数的问题等等)

  师:同学们已经提了这么多的问题。那么老师两小时能织多少厘米呢?

  生:(不约而同的)×2

  这个算式表示的是什么意义?你是怎样思考的?为什么会用乘法计算?

  此时引导学生说出整数乘法的意义以及与数量的关系:(板书)工作效率×工作时间=工作总量

  2.提出问题,推进新课

  (1)引出课题

  师:2小时织多少米?谁能列出算式来解决这个实际问题呢?

  师:我们从前面分析过的数量关系的角度来理解,今天学习的就是这样的乘法算式。(板书:“一个数乘分数”)

  (2)研究分数乘法的意义

  ①初步感知

  (对于学生回答总比较贴切的教师应该给予充分的肯定与表扬)

  师:看来大家对这个算式都有自己的理解。那这个算式到底表示什么意义呢?

  (小组讨论合作时教师巡视,并适当予以恰当的指导。)

  请折法不同的学生来进行展示与交流,加深学生对这个过程的印象,帮助学生进一步理解。

  教师根据学生的方法以课件演示,进一步让学生加深印象,虽然折纸的方法有很多,但每一种方法都是正确的。

  ②进一步对其理解

  ③拓展延伸

  ④归纳总结

  引导学生总结,分数乘分数的意义:一个数和分数相乘,我们可以把它看作是求这个数的几分之几是多少。

  (3)探究计算的方法

  几分之一乘几分之一的算法

  大家一起猜测结果。

  师:我们猜测的结果到底对不对呢?能想个办法来验证一下吗?

  (学生进行操作来验证。然后全班集体交流。)学生可能出现的方法有:

  方法一:用分数的意义来解释

  把单位1平均分成2份,取其中的1份,并把这1份又平均分成4份,也就是把“1”平均分成了2×4=8份,取其中的1份,所以正确。

  重点请同学谈一谈8是如何得到的。

  方法二:化小数验证

  方法三:画图或折纸

  小结:从大家的思考交流中我们可以看出:是把单位“1”平均分成2份,取其中的1份,再把这1份又平均分成4份,也就是把“1”平均分成了2×4=8份,取了1份,所以是■(边说边板书)。

  现在来观察这个等式左右两边的分子、分母是什么关系?你能发现什么问题?

  (学生在观察等式从左边到右边的变化时,发现右边积的分母正好是左边两个因数分母的乘积,而积的分子正好是两个因数中分子的积。学生通过猜想:发现这可能是计算分数除法的方法。)

  教师总结:我们从这个例子中推想出来的结论,是否适用于其他这种情况呢?这时可称之为猜想。想证明猜想是否正确,还需要我们进行进一步验证。

  四、教学反思

  本课在教学了分数乘法的基础上进行教学,学生已经掌握了分数乘整数的计算方法,本课重点就是根据分数乘法的意义,理解求一个数的几分之几是多少的应用题的数量关系。课堂中也重点训练了学生概括等量关系式的能力,为以后的分数乘除法应用题打下了基础。学生学习分数乘法,个别学生对分数乘法计算还不是很熟练,在今后的学习中,我们仍应继续提高计算能力。

分数乘法教学设计12

  教学目标:

  1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。

  2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。

  教学重点:

  理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学准备:

  学生做的风筝

  教学过程:

  一、 复习

  1、1/2× 3表示的`意义是什么?(让学生自己说一说,)

  2、分数乘整数的计算法则是什么?

  二、基础练习

  1、的3倍是多少?

  2、10个是多少?

  订正时说说每个算式表示的意义。

  三、专项练习

  1、自主练习第4、5、6题

  这三题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

  2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

  3、第7、10题

  这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

  4、第9、12题

  这两道题是学生自己独立作,利用分数与除法的关系解决问题的。

  四、合作总结

  这节课你巩固了那些知识?

  五、创意作业

  同桌出题交换解答,交换批改,共同提高。

分数乘法教学设计13

  教学内容:人教版小学数学教材六年级上册第8~9页例6、例7及相关练习。

  教学目标:

  1.使学生通过观察、猜测、推理、验证等数学活动理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行一些简便计算。

  2.在计算过程中,培养学生细心观察、根据具体情况灵活应用所学知识解决问题的能力。

  3.培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。

  教学重点:培养学生应用运算定律进行一些简便计算的能力。

  教学难点:培养学生细心观察、根据具体情况灵活应用所学知识的能力。

  教学准备:课件

  教学过程:

  一、复习导入

  (一)激疑引入

  1.教师在黑板上出示两个算式:21×3 3×21。

  同学们,这两个算式相等吗?(学生显然能得出相等,教师用等号连接)21×3=3×21。

  2.看到这个等式,你想起了什么知识?(乘法交换律)

  3.用字母可以表示为:。这里的字母你觉得可以表示哪些数呢?

  4.和可以表示分数,这只是你们的猜测。下面请你独立思考,举例验证这个猜测。

  5.交流反馈:整数乘法交换律在分数乘法中同样适用,此时你还想到了哪些定律呢?

  (二)点明课题

  师:今天我们就来学习和研究整数乘法运算定律推广到分数。

  【设计意图】从学生原有的知识经验入手,利用知识的正迁移和同化与顺应的心理基础,使学生通过猜测、举例验证得出“整数乘法交换律在分数乘法中同样适用”,使其获得成功的喜悦。这样既培养了学生观察、猜测、验证的.数学思维能力,又培养了学生口头表达的能力,使其能既有条理又较为清晰地表述自己的思考过程。同理,利用这样的数学思想,得出其他两个运算定律的应用。

  二、探究新知

  (一)合作学习,展开验证

  1.刚才同学们还想到了乘法结合律和乘法分配律,那么这里的字母也可以表示分数吗?下面请同桌合作,举例验证。

  2.同桌合作,举例验证。

  合作要求:

  (1)举例说明

  ①请同桌各写出一个算式并计算出结果,如或;

  ②同桌交换,计算出利用运算定律后的结果,如或。

  ③对照两者的结果是否相等。

  (2)能否举出一个不相等的例子?

  (3)得出结论。

  3.全班交流反馈,请几个小组来交流验证过程。

  4.小结:整数乘法交换律、结合律和分配律对于分数乘法同样适用。

  【设计意图】学生通过独立思考、同桌合作、全班交流反馈的形式,经历猜测、举例验证、尝试举反例、得出结论这样的数学活动过程,激发了学生探究数学知识的兴趣,渗透了科学的探究方法。这一过程,学生始终是知识建构的主人,充分体现了学生的主体地位。

  (二)实践新知,应用提高

  1.我们花了那么多时间和精力为了得出这一个结论,应该怎样应用呢?

  2.独立尝试。

  (1)出示:

  (2)思考:选择什么运算定律才能使计算简便?

  (3)计算

  3.小组交流。

  四人小组合作交流,讨论:

  (1)计算中运用了什么运算定律?

  (2)这样计算,为什么能使计算简便?

  4.全班反馈

  第一题:

  =×5×(应用了乘法交换律,可约分)

  =3×

  =

  第二题:

  =×12+×12(应用了乘法分配律,可约分)

  =10+3

  =13

  5.小结:应用乘法运算定律,能使一些分数混合运算变得简便。

  【设计意图】学生通过独立思考、小组交流、全班反馈,得到“应用乘法运算定律,能使一些分数混合运算变得简便”的结论,使学生体验到获得成功的喜悦,更能够激发其学习的兴趣。

  三、练习巩固

  1.请独立完成教材第9页的“做一做”。

  (1)××3 87×

  选择合适的运算定律,使计算简便。第3小题,思考87与的分母之间有什么联系,怎样做可以进行约分呢?

  (2)奶牛场每头奶牛平均日产牛奶t,42头奶牛100天可产奶多少吨?

  每头奶牛每天产奶t,那么42头奶牛每天产奶t。求这些奶牛100天产奶的数量,可以列出的算式为:。

  2.出示:

  (1)请同学们仔细观察这两题,动笔前先思考怎样算比较简便?学生独立计算。

  (2)第一题用乘法分配律进行简便计算大家都没有异议;第二题到底如何?两种方法都试试看,比较得出结论,其实用乘法分配律并不简单。

  (3)第二题的数怎么改一下用乘法分配律就比较简单了呢?

  (4)做了这两题,你有什么体会?

  【设计意图】引导学生先观察后计算,有利于学生细心观察,养成良好的计算习惯。同时让学生通过计算自己感悟,并不是任何计算都是用乘法分配律简便。针对封闭的计算题采用了开放式教学,为计算练习注入了活力,学生兴趣高涨,思维活跃。

  3.开放练习:在□中填上适当的数,使计算简便。

  ×15×□ ×+×□ (+□)×□

  【设计意图】开放式习题的设计,把学生所学的知识和已掌握的解题能力巧妙地融合在一起,既使学生巩固乘法运算定律的运用,弄清了知识之间的联系和区别,又使学生的知识得到了整合,提高了学生的发散思维能力。

  四、课堂小结

  通过本节课的学习,你掌握了哪些知识?

  你是怎样获得这些知识的?

  你还有哪些疑问?

  五、随堂作业

  独立完成教材第12页练习二的第12、13、14题。

分数乘法教学设计14

  教学内容:人教版小学数学教材六年级上册第13~14页例8及相关练习。

  教学目标:

  1、使学生理解和掌握连续求一个数的几分之几是多少的问题的数量关系,掌握分数连乘法的计算方法,并能正确计算。

  2、让学生在“用数学”活动中,学会收集、选择和加工信息,在共同探讨中培养学生的合作意识以及分析问题、解决问题的能力。

  教学重点:理解掌握连续求一个数的几分之几是多少的问题的数量关系,掌握解题的基本方法。

  教学难点:在用分数连乘的方法解决实际问题的过程中,理解单位“1”“分率”与所对应的量的相对性。进而帮助学生深刻理解单位“1”“分率”与具体数量之间的一一对应关系。

  教学准备:课件、学具。

  教学过程:

  一、复习引入,唤醒旧知

  1、找一找,谁是表示单位“1”的量:

  (1)足球的个数是篮球的;

  (2)女生人数与男生人数的相等。

  2、你能解决这两个问题吗?

  (1)篮球有35个,足球的个数是篮球的,足球有多少个?

  (2)六(1)班有男生25人,女生人数与男生人数的相等,六(1)班有女生多少人?

  3、揭题:这节课我们就继续利用单位“1”的量,来解决更多的问题。

  【设计意图】复习环节中两个练习题的设计,有层次、有梯度地复习了有关单位“1”的知识内容,目的是让学生熟悉单位“1”、分率与具体量之间的一一对应关系,为学习新知做好铺垫。

  二、自主探究,思辨交流

  (一)阅读与理解

  出示例8情境图:这个大棚共480 m2,其中一半种各种萝卜,红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?

  你获取了哪些数学信息呢?

  整个大棚的面积是(XX)。

  萝卜地的面积占整个大棚面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  红萝卜地的面积占萝卜地面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  要求的是(XX)的面积。

  【设计意图】审题是解决问题的第一步,引导学生了解题目中有哪些数学信息,有助于提高学生收集、处理、分析有效的数学信息的能力,继而提高学生提出问题、分析问题的能力。真正将课标提出的“四基能力”落实在课堂之中。

  (二)分析与解答

  1、分析:如果我们用一张长方形的纸来表示整个大棚,你能折出或画出红萝卜地的面积吗?

  学生动手操作。

  2、解答:看着这张图,你能解决这个问题吗?(学生尝试解决。)

  3、交流:谁来说说你是怎么解决的?

  (1)先求萝卜地的面积,算式是480×=240(m2);

  再求红萝卜地的面积,算式是240×=60(m2)。

  思辨:求萝卜地的面积时,谁是表示单位“1”的.量?(整个大棚面积)

  求红萝卜地的面积时,谁是表示单位“1”的量?(萝卜地面积)

  利用上述图例,引导学生整理、思考上述思辨问题,并得出:连续两步求一个数的几分之几是多少,这两步中表示单位“1”的量是不同的。

  (2)先求红萝卜地占大棚面积的几分之几。(老师问:你能在图上指出红萝卜地占大棚面积的几分之几吗?)算式是×=。

  再求红萝卜地的面积,算式是480×=60(m2)。

  思辨:这两种方法有什么相同点和不同点,你能发现什么?

  学生充分发表意见。

  师小结:今后解题时一定要认真分析题意,想好先算什么,再算什么,既可以用分步算式计算,也可以列综合算式计算,这就是我们这节课要学习的连续求一个数的几分之几是多少的问题。

  【设计意图】在本环节的教学中,主要采取自主探究的形式,让学生根据信息进行积极思考、尝试解决、思辨交流,调动全体学生参与学习活动的积极性。

  (三)回顾与反思

  我们求出的红萝卜地的面积是60 m2,这个答案是否正确呢?你能用自己喜欢的方法检验一下吗?

  生:红萝卜地的面积是60 m2,60÷240=,确实是占萝卜地面积的。

  萝卜地的面积是240 m2,240÷480=,正好是整个大棚面积的一半。

  生:从折纸中,我们可以很清晰地看出,红萝卜地、萝卜地和整个大棚的面积之间的数量关系符合题意。

  【设计意图】让学生对自己的探索过程进行回顾与反思,是对自己的学习活动进行的有效自我调节,是智慧成熟的标志。可以培养学生反思的意识,使学生养成反思的习惯,提高学生反思的能力,进而使学生调整学习过程,改善学习策略,促进自主学习能力的提高。

  三、巩固练习,强化认知

  1、教材第14页做一做:咱们班36人,的同学长大后想成为老师,想成为科学家的人数是想当老师人数的,多少名同学想成为科学家?

  你能用几种方法计算呢?

  说说你的分析思路,第一步是先求什么?

  2、解答教材第16页练习三的第1~3题。

  (1)人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的,在毛细血管中的流动速度只有静脉中的。血液在毛细血管中每秒流动多少厘米?

  第一种方法先求什么?再求什么?

  先求血液在静脉中的流动速度,再求血液在毛细血管中的流动速度。

  算式是50××=(厘米)。

  第二种方法先求什么?再求什么?

  先求血液在毛细血管中的流动速度是在动脉中的流动速度的几分之几,再求在毛细血管中的流动速度。

  算式是50×=(厘米)。

  (2)海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

  第一种方法先求什么?再求什么?

  先求海狮的寿命,再求海豹的寿命大约是多少年。

  算式是40××=20(年)。

  第二种方法先求什么?再求什么?

  先求海豹的寿命是海象的几分之几,再求海豹的寿命大约是多少年。

  算式是40×=20(年)。

  (3)芍药的花期是32天,玫瑰的花期是芍药的,水仙的花期是玫瑰的。水仙的花期是多少天?

  第一种方法先求什么?再求什么?

  先求玫瑰的花期,再求水仙的花期是多少天。

  算式是32××=15(天)。

  第二种方法先求什么?再求什么?

  先求水仙的花期是芍药的花期的几分之几,再求水仙的花期是多少天。

  算式是32×=15(天)。

  【设计意图】提高学生运用所学知识解决实际问题的能力,从而加深对连续求一个数的几分之几是多少的问题的认识。练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”“拓展性练习”等练习形式,检验学习效果,培养学生运用所学知识解决实际问题的能力,把教学目标真正落实到位。

  四、全课总结,提升认识

  (一)师生共同小结:本节课我们学习了哪些内容?

  (二)师小结:

  1、连续求一个数的几分之几是多少,相当于把两个“求一个数是多少”的问题整合在一起。要先想清楚第一步求什么,特别要注意第一步计算和第二步计算中表示单位“1”的量是不同的。

  2、我们可以借助折纸或画图的方法理解数量关系。

  【设计意图】通过小结,让学生自主回顾本课所学知识并进行简单的梳理,同时通过教师的归纳与提炼,让学生理解连续求一个数的几分之几是多少的问题,渗透“数形结合”的数学思想。

  五、布置作业,课外延伸

  在实际生活中,我们遇到过需要“连续求一个数的几分之几是多少”的问题吗?请你课后去收集一下吧。

  【设计意图】用数学的眼光看生活,用学过的数学知识去解决实际生活中的问题,可以体现知识的价值,提升学生学习数学的积极性,获得学习数学的成功感。

分数乘法教学设计15

  教学目标

  1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。

  2.探索并掌握分数乘整数的计算方法,能正确计算。

  3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  教学重点会用分数乘整数的计算法则真确进行计算。

  教学难点分析和解决分数乘整数的实际问题。

  教师指导与教学过程学生学习活动过程设计意图

  一,复习整数乘法的意义

  1.什么叫整数乘法?就是求几个相同加数的和的简便运算。

  2.出示题目,学生进行计算

  (1)6+6+6=6×3

  二、新授:

  1、出示题卡

  1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?

  2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。

  学生回忆整数乘法,并回答什么叫整数乘法。

  1、学生仔细阅读题卡,理解题意否,列式计算。

  2、学生交流各自计算的方法。

  3、全班进行交流。

  15+15+15=1+1+15=35

  3×15=15+15+15=3×15=35

  通过复习整数乘法的'意义,过渡到分数乘法的意义,学习易于理解。

  在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。

  教师指导与教学过程学生学习活动过程设计意图

  三、涂一涂,算一算

  (1)2个3/7的和是多少?

  (2)3个5/16的和是多少?

  四、练习巩固

  1、5个3/8是多少?

  2、4个2/17是多少?

  3、6个3/25是多少?学生打开教科书,选涂一涂,再列式计算。

  学生审题后,涂一涂,再列式计算。

  37×2=3×2757

  全班交流

  5/16×3=5×3/16

  =15/16

  学生独立完成在作业本上

  帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。

  板书设计:

  分数乘法

  分数乘整数例题:

  意义:

  法则:

  教学反思:

【分数乘法教学设计】相关文章:

《分数乘法》教学设计07-31

分数乘法教学反思12-27

分数乘法3教学反思01-23

《分数乘法》教学反思15篇04-20

分数乘法教学反思(15篇)02-05

分数教学设计02-12

分数乘法说课稿01-17

分数乘法教案02-14

分数乘法说课稿06-23