《几何概型》说课稿
- 相关推荐
在教学工作者开展教学活动前,就难以避免地要准备说课稿,说课稿可以帮助我们提高教学效果。那么写说课稿需要注意哪些问题呢?以下是小编整理的《几何概型》说课稿,欢迎大家分享。
一、说教材
本课选自苏教版高中数学必修三第三章第三节“几何概型”第一课时。本节课的主要内容是几何概型的概念、基本特点、概率计算公式,它是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,对全面系统地掌握概率知识,对于学生辩证思想的进一步形成具有良好的作用。
二、说学情
前面学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。在古典概型向几何概型的过渡时,以及实际背景如何转化为“测度”时,会有一些困难。但只要引导得当,理解几何概型,完成教学目标,是切实可行的。
三、说教学目标
依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:
【知识与技能】
了解几何概型的意义,会辨别一个事件是几何概型,会求简单的几何概型的概率。
【过程与方法】
通过探究几何概型计算方法的过程,体验几何概型与古典概型的联系与区别,增强实际操作能力。
【情感、态度与价值观】
通过对几何概型的教学,体会实验结果的随机性与规律性,养成合作交流的习惯。
四、说教学重难点
根据教材以及学生的实际,确定本课时重点如下:几何概型的基本特点及“测度”为长度的运算。
依据重点、学生的实际、教学中可能出现的问题,确定本课时难点如下:无限过渡到有限,实际背景如何转化为长度。
五、说教法和学法
根据本节课的内容、教学目标、教学手段和学生的实际水平等因素,在教法上,我以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、运算和表示。
1)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子。
2)紧扣几何与古典概型的比较,让学生在类比中认识几何概型的特点,和加深对其的理解。
3)紧扣几何概型的图形意义,渗透数形结合的思想。
对于学生的学习,结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较,立足基础知识和基本技能,掌握好典型例题,注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。
六、说教学过程
(一)新课导入
首先是导入环节,在导入环节我会先出示两个问题情境,如下:问题情境一:取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?(教师演示绳子)
问题情境二:射箭比赛的箭靶涂有五个彩色得分环?从外向内为白色、黑色、蓝色、红色,靶星是金色,金色靶心叫“黄心”。奥运会的比赛靶面直径为122cm,靶心直径为12.2cm,运动员在70m外射箭。假设射箭射中靶面内任何一点都是等可能的,那么射中黄心的概率为多少?(播放flash动画)
设计意图:这两个问题都来自于日常生活中,特别是当第二个问题提出时,学生们会跃跃欲试,根据心理学,情境具有暗示作用,在暗示作用下,学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会被极大的调动起来。
(二)新知探索
这一环节是几何概型的特点和计算公式的学习,是本课的中心环节。为了突出重点,突破难点,发挥学生的主体作用。
经过学生之间讨论分析,在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解。
通过学生的讨论,解决以上两个问题并不困难,解决之后,教师向学生介绍“测度”这一新名词。学生只需要知道第一个问题中的测度是指(线段的)长度,第二个问题中的测度是指(圆的)面积.
教师提问:由以上两个问题,你觉得此类问题与古典概型相比有何特点?如何求此类问题的概率?
让学生分组讨论,教师适当点拨,引出几何概型的概念、基本特点、概率计算公式,之后要加以说明,以便学生理解与记忆,帮助学生弄清其形式和本质,明确其内涵和外延。
对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点。这样就可以把随机事件与几何区域联系在一起,这里的区域可以是线段、平面图形、立体图形等,用这种方法处理随机试验,称为几何概型(geometric probability model)。
【《几何概型》说课稿】相关文章:
优秀毛概实践报告07-19
毛概社会实践报告05-31
毛概的社会实践报告01-05
毛概社会实践报告12-16
毛概社会实践报告12-24
毛概实践社会报告01-13
大学生毛概实践报告04-23
大学毛概社会实践报告06-14
关于毛概社会实践报告06-13