高中数学说课稿
作为一名辛苦耕耘的教育工作者,可能需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。那么写说课稿需要注意哪些问题呢?下面是小编为大家整理的高中数学说课稿,欢迎阅读与收藏。
高中数学说课稿1
一、平面向量的坐标表示
1、定义
2、特殊向量的坐标表示
3、相等向量的坐标也相等
4、向量OA的坐标表示
二、平面向量的坐标运算
1、向量的坐标运算法则
2、向量AB的坐标与点A、点B的坐标的关系
三、例题
例1
例2
例3
方案二:
一、平面向量的坐标表示
1、定义
2、特殊向量的坐标表示
3、相等向量的.坐标也相等
4、向量OA的坐标表示
二、平面向量的坐标运算
1、坐标运算法则
2、向量AB的坐标与A、B的坐标的关系
三、例题
例1
例2
例3
教学环节流程安排
教案的设计说明:
1、设计初衷:
本节课内容难度不高,但知识点比较繁多,而且各知识点之间的衔接不够紧凑,对初学者来说容易产生杂乱无章的感觉.教师作为教学活动的设计者,在教学设计中应力求突出知识间的联系,指引学生理清众多的思绪,主动参与到思考、观察、猜想、验证、应用的教学活动中去,从而顺利地突破重、难点.
2、呈现方式:
根据教学大纲要求结合本节课具体的教学目标和学生的认知特点,我设计了"复习回顾--创设问题情境--合作探究和指导应用--归纳小结--布置作业"五个教学环节.
3、新课程观的体现:
本节课主要采用的是"引导发现、合作探究"的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法.整个教学中既突出了学生的主体地位,又发挥了教师的指导作用.
4、可能出现的问题:
探究式教学需要留给学生充足的时间和空间,为学生提供活动的机会,学生情况不同,反馈给教师的信息也不同,因而在时间和内容上都不是固定的,需要教师在设计时富有一定的弹性,在实施时设计方案跟着学生转变,具有一定的开放性和灵活性.
高中数学说课稿2
一、教材分析
本节内容是等差数列(第一课时)的内容,属于数与代数领域的知识。本节是数列课程的新授课,为后面等比数列以及数列求和的知识点作基础。数列是高中数学重要内容之一,它有着广泛的实际应用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。在数学思想的方面,数列在处理数与数之间的关系中,更多地培养了学生运用函数与函数关系的思想。
二、教学目标
根据课程标准的要求和学生的实际水平,确定了本次课的教学目标
(1)在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
(2)在能力上:培养学生观察、分析、归纳、推理的能力;以形象的实际例子作为学生理解与练习的模板,使学生在不断实践中巩固学习到的知识;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)在情感上:通过对等差数列在实际问题中的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据课程标准的要求我确定本节课的教学重点为: ①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
三、教学方法分析:
对于高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以本堂课将从实际中的问题出发,以学生日常生活中较易接触的一些数学问题,籍此启发学生对于数列知识点的理解。本节课大多采用启发式、讨论式的.教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,并学会将数学知识运用到实际问题的解决中。
四、教学过程
通过复习上节课数列的定义来引入几个数列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通过这3个数列,初步认识等差数列的特征,为后面的概念学习建立基础。由学生观察第一个数列与第三个数列的特点,并与第二个做对比,引出等差数列的概念。
(二)新课探究
1、由引入自然的给出等差数列的概念:
定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数;
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,引导学生讲本不是等差数列的第二组数列修改成等差数列。并由观察三组数列的不同特点,由此强调:公差可以是正数、负数,并再举出特例数列1,1,1,1,1,1,1......说明公差也可以是0。
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,运用求数列通项公式的办法------迭加法:整个过程通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过运用迭加法这一数学思想,便于学生从概念理解的过程过渡到运用概念的过程。
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,
即an=2n-1以此来巩固等差数列通项公式运用。
(三)应用举例
现实生活中,以学生较为熟悉的iphone手机的数据作为例子。观察Iphone手机的发布时间,iphone第一代发布于20xx年,第二代发布于20xx年,第三代发布于20xx年,第四代发布于20xx年。现在第六代发布于今年20xx年。首先,让学生观察从04年到10年每两代iphone发布的间隔时间,让学生自行寻找规律,并在此基础上让学生估测第五代iphone的发布时间,并验证第五代iphone发布于20xx年。同时,再让学生预测在未来,下一部iphone发布的时间,是学生体验到将数学知识运用到实际中的方法与步骤。为了加深联系,再给出了每代iphone的价格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在给出的数据上,将价格随时间的变化以坐标轴的形式作图表示出来,让学生观察到虽然这些数据非等差,但是可以大致变为等差的直线图像,让学生体会到“拟合数据”的思想。在此基础上,让学生进行练习,预测14年如今iphone6的上市价格为6888元,并与学生通过数列进行推理的价格进行对比,让学生对自己在实践中解决问题的过程中找到一定的认同感。
五、归纳小结
提问学生,总结这节课的收获
1、等差数列的概念及数学表达式,并强调关键字:从第二项开始,它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式an= a1+(n-1) d
3、将让学生在实践中了解,将数列知识点运用到实际中的方法。
4、在课末提出启发性问题,若是有人将每一部iphone都买入,那他一共花费了多少钱?借此引出了下一节,等差数列求和的知识点。让学生尝试自行去思考这样的问题。
5、布置作业
高中数学说课稿3
【教学目标】
1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式(R)与(R)的几何意义,体会正弦函数的对称性。
2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力。
3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识。
【教学重点】
正弦函数图象的对称性及其代数表示形式。
【教学难点】
用等式表示正弦函数图象关于直线对称和关于点对称。
【教学方法】
教师启发引导与学生自主探究相结合。
【教学手段】
计算机、图形计算器(学生人手一台)。
【教学过程】
一、复习引入
1.展示生活实例
对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图)。
2.复习对称概念
初中我们已经学习过轴对称图形和中心对称图形的有关概念:
轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合;
中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合。
3.作图观察
请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形?
4.猜想图形性质
经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心。(教师点评并板书)
如何检验猜想是否正确?
我们知道,诱导公式(R),刻画了正弦曲线关于原点对称,而(R),刻画了余弦曲线关于轴对称。从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明。
今天我们利用图形计算器来研究正弦函数图象的对称性。(板书课题)
二、探究新知
分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质。
(一)对于正弦曲线轴对称性的研究
第一阶段,实例分析——对正弦曲线关于直线对称的研究。
1.直观探索——利用图形计算器的绘图功能进行探索
请同学们在同一坐标系中画出正弦曲线和直线的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线两侧正弦函数值有什么变化规律?
给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在左右对称取值时,正弦函数值相等。
从直观上得到的猜想,需要从数值上进一步精确检验。
2.数值检验——利用图形计算器的计算功能进行探索
请同学们思考,对于上述猜想如何取值进行检验呢?
教师组织学生通过合作的方式,对称地在左右自主选取适当的自变量,并计算函数值,对结果进行列表比较归纳。同时为没有思路的学生准备参考表格如下:
......
......
......
......
给学生一定的时间进行思考、操作,根据情况进行指导并组织学生进行交流,然后请一组学生说明他们的研究过程。学生可以采用不同的数据采集方法,得到的结果如下列图表(表格中函数值精确到0.001):
......
......
......
—0.416
0.071
0.540
0.878
1
0.878
0.540
0.071
—0.416
......
上述计算结果,初步检验了猜想,并可以把猜想用等式(R)表示。
请同学们利用前面得到的数据,用图形计算器描点画图(见下图),然后进行观察比较,思考点P和P′在平面直角坐标系中有怎样的位置关系?
根据画图结果,可以看出,点P和P′关于直线对称。这样,正弦曲线关于直线对称,可以用等式(R)表示。
这样的计算是有限的,并受到精确度的影响,还需要对等式进行严格证明。
3.严格证明——证明等式对任意R恒成立
请同学们思考,证明等式的基本方法有哪些?所要证的等式左右两端有何特征?有可能选用什么样的公式?
预案一:根据诱导公式,有。
预案二:根据公式和,有。
预案三:根据正弦函数的定义,在平面直角坐标系中,无论取任何实数,角和的终边总是关于轴对称(见右图),他们的正弦值恒相等。
这样我们就证明了等式对任意R恒成立,也就证明了正弦曲线关于直线对称。
事实上,诱导公式也可以由等式推出,即这两个等式是等价的因此,正弦曲线关于直线对称,是诱导公式(R)的几何意义。
阶段小结:我们从几何直观获得启发,又通过数据计算进一步检验,得出正弦曲线关于直线对称可以用等式(R)表示,通过对这一等式的严格证明,证实了我们猜想的'正确性。上述等式与诱导公式(R)的等价性,使我们对这一诱导公式有了新的理解。
第二阶段,抽象概括——探索正弦曲线的其他对称轴。
师生、生生交流,步步深入。
问题一:正弦曲线还有其他对称轴吗?有多少条对称轴?对称轴方程形式有什么特点?
可以发现,经过图象最大值点和最小值点且垂直于轴的直线都是正弦曲线的对称轴(教师利用课件演示),则对称轴方程的一般形式为:(Z)。
问题二:能用等式表示"正弦曲线关于直线(Z)对称"吗?
根据前面的研究,上述对称可以用等式(Z,R)表示。
请学生证明上述等式,然后组织学生交流证明思路。
证明预案:。
(二)对于正弦曲线中心对称性的研究
我们已经知道正弦函数(R)是奇函数,即(R),反映在图象上,正弦曲线关于原点对称。那么,正弦曲线还有其他对称中心吗?请同学们参照轴对称的研究方法,小组合作进行研究。
第一阶段,对正弦曲线关于点对称的研究。
1.直观探索——从图象上探索在点两侧的函数值的变化规律。
2.数值检验——在左右对称地选取一组自变量,计算函数值并列表整理。
3.严格证明——证明等式对任意R恒成立。
预案一:根据诱导公式,有。
预案二:根据诱导公式和,有。
预案三:根据正弦函数的定义,在平面直角坐标系中,无论取任何实数,角和的终边总是关于轴对称(见右图),他们的正弦值互为相反数。
事实上,等式与诱导公式是等价的这样,正弦曲线关于点对称,是诱导公式(R)的几何意义。
第二阶段,探索正弦曲线的其它对称中心。
请同学尝试解决下列三个问题:
1.归纳正弦函数图象对称中心坐标的一般形式。
正弦函数图象对称中心坐标的一般形式为:(Z)(教师利用课件演示)。
2.用等式表示"正弦曲线关于点(Z)对称"。
上述对称可以用等式(Z,R)表示。
3.证明归纳出的等式。(根据课堂情况可以由学生课后完成证明)
三、课堂小结
1.课堂小结
(1)知识上:得出了正弦函数图象对称轴方程和对称中心坐标的一般形式,研究了对称性的代数表示形式,并利用诱导公式完成了严格的理论证明。在研究的过程中,对诱导公式与(R)有了新的理解,感受了正弦函数的对称性以及数和形的辨证统一。
(2)方法上:直观→抽象,特殊→一般,体验了观察—归纳—猜想—严格证明的研究方法。
2.作业
(1)总结课上的研究过程和方法,尝试研究余弦函数图象的对称性,并结合自己的研究过程和结论写出研究报告,与其他同学交流收获。
(2)找一个一般函数,如,R,研究它的图象及对称性;并与正弦函数的图象及对称性进行比较。
(3)思考:如何用等式表示函数关于直线对称,以及关于点对称?
(4)尝试证明函数的图象分别关于直线和直线对称。
高中数学说课稿4
各位老师你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1. 教材所处的地位和作用:
本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。
2. 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3. 重点,难点以及确定依据:
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点: 通过 突出重点
难点: 通过 突破难点
关键:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1. 教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。
2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3. 学情分析:(说学法)
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学
生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的.去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4. 教学程序及设想:
(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学说课稿5
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1、知识与技能(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2、过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3、情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1、函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2、应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的`方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。
2、观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1< p="">
(3)如何用数学符号语言来描述这个规律?
教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。
(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?
类似地分析图象在y轴的左侧部分。
通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1< p="">
仿照单调增函数定义,由学生说出单调减函数的定义。
教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。
(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)
(三)巩固练习
1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x
练习2:练习2:判断下列说法是否正确
①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。
②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。
1③已知函数y=,因为f(-1)< p="">
1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x
上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。
(四)归纳总结
我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。
(五)布置作业
必做题:习题2-3A组第2,4,5题。
选做题:习题2-3B组第2题。
新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。
高中数学说课稿6
本节课讲述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法分析:
对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合
这类学生的心理发展特点,从而促进思维能力的进一步发展。
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导:
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②
通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,
这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,??;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3. 0,0,0,0,0,0,??.; √ d=0
4. 1,2,3,2,3,4,??;×
5. 1,0,1,0,1,??×
其中第一个数列公差<0,>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的`协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,
即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另
一部分量。
例1 (1)求等差数列8,5,2,?的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,?的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式 an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。
(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
高中数学说课稿7
各位老师:
大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
2、教学的重点和难点
重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系
二、教学目标分析
1.知识与技能目标
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
三、教法分析
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
四、教学过程分析
1、创设情境,引入新课
在掷骰子的试验中,我们可以定义许多事件,如:
c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜
c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜
c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜
D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜
D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜
f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜
H=﹛出现的点数为奇数﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
2、探究新知
㈠事件的关系与运算
⑴经过上面的思考,我们得出:
试验的可能结果的全体←→全集
↓↓
每一个事件←→子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
集合的并→两事件的并事件(和事件)
集合的交→两事件的交事件(积事件)
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件G和事件H是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
㈡概率的基本性质:
⑴回顾:频率=频数/试验的次数
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的`实验来总结出概率的基本性质,师生共同交流得出结果)
3、典型例题探究
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
4、课堂小结
⑴理解事件的关系和运算
⑵掌握概率的基本性质
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
5、布置作业
习题3、1A1、3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
概率的基本性质
一、事件间的关系和运算
二、概率的基本性质
三、例1的板书区
例2的板书区
四、规律性质总结
高中数学说课稿8
我今天说课的课题是新课标高中数学人教版A版必修第二册第三章“3.1.1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。
一、说教材:
1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。
2、教学目标
根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)知识与技能目标:
了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。
(2)过程与方法目标:
引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力
(3)情感、态度与价值观目标:
在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
3、教学重点、难点
(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。
(2)教学难点:斜率公式的推导
二、说教法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的'主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自己的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。
三、说学法
在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。
四、说教学程序:
1、导入新课:
提出问题:如何确定一条直线的位置?
(1)两点确定一条直线;
(2)一点能确定一条直线吗?
过一点P可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。
设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。
2、探究发现:
(1)直线的倾斜角:
有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。
(2)直线的确定方法:
确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。
(3)直线的斜率:
注:直线的倾斜角与斜率的区别:
所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)
(4)由两点确定的直线的斜率:
先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:
经过两点P1(x1.y1),P2(x2,y2)直线的斜率公式:(x1≠x2)。
3、学用结合:
(1)例题讲解:P89-90/例题1和例题2。
例题的讲解主要关注思路的点拨以及解题过程的规范书写。
(2)课堂练习:
P91/练习第1、2题
4、总结归纳:
直线的倾斜角直线的斜率直线的斜率公式
定义
取值范围
5、布置作业:P 91/练习第3、4题。
高中数学说课稿9
尊敬的各位考官:
大家好,我是今天的xx号考生,今天我说课的内容是《单调性与最大(小)值》的第一课时《单调性》。
新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教A版高中数学必修1第一章《集合与函数概念》的第三节《函数的基本性质》第一小节《单调性与最大(小)值》的第一课时。本小节主要讲解的内容是函数的'单调性以及最大、最小值的概念,本节课主要讲解增减函数的概念以及单调性。之前学生对于函数的概念已经进行了学习,本节课是在原来的基础上进一步巩固函数的概念,但是主要是针对性质的学习。并且为之后研究函数的性质、用函数的性质解决生活中的问题起到非常关键性的作用。所以本节课的学习对于学生至关重要。
二、说学情
接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象能力等已经发展的比较成熟。所以教学中,可以将更多的活动交给学生进行探究。还可以进行自主学习,提高各方面的能力。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
认识函数值随自变量的增大而增大(减小)的规律,由此得出增(减)函数的定义。掌握用定义证明函数单调性的基本方法与步骤。
(二)过程与方法
在研究函数性质的过程中,通过自主探究活动,学习数学思考的基本方法,提高数学思维能力。
(三)情感态度价值观
感知从具体到抽象、从特殊到一般、从感性到理性的认知过程,养成良好的数学学习习惯。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:增(减)函数的定义。教学难点是:从图象升降的直观认识过渡到函数增减的数学符号语言表述;用定义证明函数的单调性。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节,大屏幕直接展示图1.3-1,并让学生通过对两个图象的观察,总结图象具有什么特点,根据学生对图象变化特点的表述,引出本节课研究的内容为《单调性》。
这样通过函数的图象进行引入,既能够提高学生的学习兴趣,还能够为后面研究增减函数的抽象定义做铺垫,让学生对于函数的性质有比较直观的认识。
(二)探索新知
接下来是教学中最重要的探索新知环节,我主要分为以下几步。
第一个内容是对“上升”、“下降”的直观认识。
高中数学说课稿10
各位老师:
大家好!
我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的.概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1.基本事件的特点
2.古典概型的特点
3.古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
高中数学说课稿11
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为
教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究
让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线 的距离等于定长 的所有的点;
(4)方程 的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的.元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?
a属于集合A,记作a∈A
问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
a不属于集合A,记作aA
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作 N
正整数集:
整数集:记作 Z
有理数集:记作 Q 实数集:记作 R
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移 变式训练
1.下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 所有无理数
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题 课本习题1.1—1、2、3.
2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。
设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
四、板书设计
好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:
集 合
1.集合的概念
2.集合元素的特征
(学生板演)
3.常见集合的表示
4.范例研究
高中数学说课稿12
课题:函数的单调性
教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)
授课教师:北京景山学校许云尧
【教学目标】
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.
【教学重点】函数单调性的概念、判断及证明.
【教学难点】根据定义证明函数的单调性.
【教学方法】教师启发讲授,学生探究学习.
【教学手段】计算机、投影仪.
【教学过程】
一、创设情境,引入课题
为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了xxxx年到xxxx年每年这一天的天气情况,下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.
引导学生识图,捕捉信息,启发学生思考.
问题:观察图形,能得到什么信息?
预案:
(1)当天的最高温度、最低温度以及达到的时刻;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
教师指出:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
问题:还能举出生活中其他的数据变化情况吗?
预案:水位高低、降雨量、燃油价格、股票价格等.
归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大还是变小.
〖设计意图〗由生活情境引入新课,激发兴趣.
二、归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,是函数的重要性质,称为函数的单调性,同学们在初中对函数的这种性质就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.
1.借助图象,直观感知
问题1:分别作出函数的图象,并且观察自变量变化时,函数值的变化规律?
预案:
(1)函数,在整个定义域内y随x的增大而增大;函数,在整个定义域内y随x的增大而减小.
(2)函数,在上y随x的增大而增大,在上y随x的增大而减小.
(3)函数,在上y随x的增大而减小,在上y随x的增大而减小.
引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数吗?
预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的'直观、描述性的认识.
〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.
2.抽象思维,形成概念
问题1:如图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
学生的困难是难以确定分界点的确切位置.
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题2:如何从解析式的角度说明在上为增函数?
预案:(1)在给定区间内取两个数,例如2和3,因为22<32,所以在上为增函数.
(2)仿(1),取多组数值验证均满足,所以在为增函数.
(3)任取,因为,即,所以在上为增函数.
对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.
〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习做好铺垫.
问题3:你能用准确的数学符号语言表述出增函数的定义吗?
师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义
(2)巩固概念
三、掌握证法,适当延展
例1证明函数在上是增函数.
1.分析解决问题
针对学生可能出现的问题,组织学生讨论、交流.
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
练习:证明函数在上是增函数.
问题:除了用定义外,如果证得对任意的,且有,能断定函数在区间上是增函数吗?
引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.
〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.了解等价形式进一步发展可以得到导数法,为今后用导数方法研究函数单调性埋下伏笔.
四、归纳小结,提高认识
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法:数形结合.
2.作业
书面作业:课本第60页习题2.3第4,5,6题.
课后探究:研究函数的单调性.
高中数学说课稿13
一、说教材:
1、教材的地位与作用
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵
1) 从割线到切线的过程中采用的逼近方法;
2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.
二、说教学目标:
根据新课程标准的要求、学生的认知水平,确定教学目标如下:
1、知识与技能 :
通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:
经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解
通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:
渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值
三、说教法与学法
对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:
教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的`定义.同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想.因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;
学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了
自主 、合作、探究的学习方法。
教具: 几何画板、幻灯片
四、说教学程序
1.创设情境
学生活动——问题系列
问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?
问题2 如图直线l是曲线C的切线吗?
(1)与 (2)与 还有直线与双曲线的位置关系
问题3 那么对于一般的曲线,切线该如何定义呢?
【设计意图】:通过类比构建认知冲突。
学生活动——复习回顾
导数的定义
【设计意图】:从理论和知识基础两方面为本节课作铺垫。
2.探索求知
学生活动——试验探究
问一;求导数的步骤是怎样的?
第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。
【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。
问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。
【设计意图】:通过学生动手实践得到平均变化率表示割线PQ的斜率。
问三;在的过程中,你能描述一下割线PQ的变化情况吗?请在图像中画出来。
【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,Q();从形的角度看, 的过程中,Q点向P点无限趋近,割线PQ趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。
探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。
【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。
问四;你能从上述过程中概括出函数在处的导数的几何意义吗?
【设计意图】:引导学生发现并说出:,割线PQ切线PT,所以割线
PQ的斜率切线PT的斜率。因此,=切线PT的斜率。
五、教学评价
1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;
2、通过学生对方法的选择,对学生的学习能力评价;
3、通过练习、课后作业,对学生的学习效果评价.
4、教学中,学生以研究者的身份学习,在问题解决的过程中,通过自身的体验对知识的认识从模糊到清晰,从直观感悟到精确掌握;
5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.
高中数学说课稿14
教学目标
依据教学大纲、考试说明及学生的实际认知情况,设计目标如下:
1、知识与技能:
(1)了解互为反函数的函数图像间的关系,并能利用这一关系,由已知函数的图像作出反函数的图像。
(2)通过由特殊到一般的归纳,培养学生探索问题的能力。
2、过程与方法:由特殊事例出发,由教师引导,学生主动探索得出互为反函数的函数图像间的关系,使学生探索知识的形成过程,本可采用自主探索,引导发现,直观演示等教学方法,同时渗透数形结合思想。
3、情感态度价值观:通过图像的对称变换是学生该授数学的对称美和谐美,激发学生的学习兴趣。
重点难点
根据教学目标,应有一个让学生参与实践,发现规律,总结特点、归纳方法的探索认知过程。特确定:
重点:互为反函数的函数图像间的关系。
难点:发现数学规律。
教学结构
教学过程设计
创设情景,引入新课
1、复习提问反函数的概念。
〇学生活动学生回答,教师总结
(1)用y表示x
(2)把y当自变量还是函数
提出问题,探究问题
一、画出y=3x-2的图像,并求出反函数。
●引导设问1原函数中的自变量与函数值和反函数中的自变量函数值什么关系?
〇学生活动学生很容易回答
原函数y=3x-2中反函数中
y:函数x:自变量x:函数y:自变量
●引导设问2在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?
〇学因为=3-2成立,所以成立即(,)在反函数图像上。
●引导设问3若连结BG,则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?
〇学生活动学生根据图形很容易得出y=x垂直平分BG,点B与点G关于y=x对称。学生证法可能有OB=OG,BD=GD等。
▲教师引导教师用几何花板,就上面的问题追随学生的思路演示当在y=3x-2图像变化时(,)也随之变化但始终有两点关于y=x对称。
●引导设问4若不求反函数,你能画出y=3x-2的反函数的图像吗?怎么画?
〇学生活动有了前面的铺垫学生很容易想到只要找出点G的两个位置便可以画出反函数的图像。
●引导设问5上题中原函数与反函数的图像,这两条直线什么关系?
〇学生活动由前面容易得出(关于y=x对称)
●引导设问6若把当作原函数的图像,那么它的反函数图像是谁?
〇学生活动由图中可以看出关于y=x相互对称所以他的反函数图像应是,另外由上节课原函数与反函数互为反函数也可得。
●引导设问7以上是一个特殊的函数,图像为直线,若对一个一般的函数图像你能根据上题的原理画出反函数的图像吗?如图是的图像,请你猜想出它的反函数图像。
〇学生活动由上题学生不难得出做y=x的对称图像(教师配合动画演示)
●引导设问8通过上面的两个问题我们可以得出原函数图像与反函数图像有什么关系?
▲学生总结,教师补充结论
(1)一个函数若存在反函数则原函数和反函数的图像关于y=x这条直线对称。
(2)一个函数若存在反函数则这两个函数许违反寒暑,若把其中一个图像当作原函数图像则另一个图象便是反函数图像。
习题精炼,深化概念
●引导设问9根据图像判断函数有没有反函数?为什么?对自变量加上什么条件才能有反函数?
〇学生活动学生从图中可以发现在原函数中可以有两个不等的自变量与同一个y相对应,当我们用y表示x后,对一个y会有两个x与之对应,所以应加上自变量的范围,使得原函数是从定义域到值域的一一映射。如:加上x>0;x
●引导设问10什么样的函数具有反函数?
▲教师引导学生总结如果一个函数图像关于y=x对称后还能成为一个函数的`图像,那么这个函数就有反函数,这个图像就是反函数的图像。这与反函数定义相对应。即定义域到值域的一一映射,这样的函数具有反函数,而单调函数具备这个特点,所以单调函数一定有反函数。
●引导设问11通过上图我们发现保留图像的单调增(减)的部分,那么它的反函数也为单调增(减)的。在看一下前面的几个例子你能得到什么样的结论?
〇学生活动通过观察学生容易得到"单调函数的反函数与原函数的单调性一致"然后教师进一步追问为什么?(由前面我们知道若一个函数存在反函数则x与y之间是一个对一个的关系,而原函数是增函数即x越大y也越大,当然y越大x也越大。)
●引导设问12由图中原函数的图像作出反函数的图像,并回答原函数的定义域值域与反函数的定义域值域有什么关系?
〇学生活动由上面结论很容易做出通过图形的样式使学生进一步认识到原函数的定义域值域是反函数的值域定义域。
总结反思,纳入系统:
内容总结:
1、在原函数图像上,那么(,)在反函数图像上。
2、与(,)关于y=x对称。
3、原函数和反函数的图像关于y=x这条直线对称。
思想总结:
由特殊到一般的思想,数形结合的思想
布置作业,承上启下
●说明:教材中对反函数(第二课时:互为反函数的函数图像间的关系)的处理是通过画几个特殊的函数图像得出一般结论的。我认为这样处理虽然可以使学生得出并记住这个结论,但学生对这个结论理解并不深刻。这样处理也不利于培养学生严密的数学思维。而我对这节课的处理是在不增加教材难度的情况下(不严密证明)利用在原函数图像上,那么(,)在反函数图像上这一性质,从图形上充分研究与(,)的关系。经讨论研究可得出结论"与(,)关于y=x对称"。进而通过任意点的对称得出原函数和反函数的图像关于y=x这条直线对称,另外利用任意点来研究图像也是以后数学中经常用到的方法。具体操作大致如下:首先请学生画出y=3x-2的图像,并求出反函数,然后提出问题1:原函数中的自变量与函数值和反函数中的自变量函数值什么关系?学生很容易得出原函数与反函数中的自变量,函数值正好对调即:原函数y=3x-2中y:函数x:自变量,反函数中x:函数y:自变量。问题2:在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?对于这个问题有了上题的铺垫,学生不难得出(,)在反函数图像上。问题3:若连结B,G(,),则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?对于这个问题的设计重在帮助学生理解与(,)为什么关于y=x对称,突出本课重点和难点。其它环节具体见教案。
高中数学说课稿15
一、背景分析
1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。
教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。
教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。
二、教学目标设计:
(一)知识目标:
1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。
(二)能力目标:
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
(三)情感目标:
1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:
数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈
整个教学设计的主要特色:
(1)由生活事例引出课题;
(2)采用开放式教学模式;
(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。
努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。
四、教学媒体设计:
本节课是概念课,要避免单一的'下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。
五、教学过程设计:
第一,创设情境,激发兴趣,引出课题:
考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。
我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。
第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
第二,引导学生分析实例,给出定义。
在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。
得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。
还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。
当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。
【高中数学说课稿】相关文章:
高中数学教学总结11-07
高中数学教学反思03-05
高中数学的教学计划02-16
《杠杆》说课稿12-02
《风筝》说课稿12-05
颐和园说课稿12-13
说课稿模板04-19
春风说课稿03-10
《长城》说课稿12-06